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Preface

In the Preface to the previous edition, we posed questions regarding trends in engineering
education and practice, and whether the discipline of heat transfer would remain relevant.
After weighing various arguments, we concluded that the future of engineering was bright
and that heat transfer would remain a vital and enabling discipline across a range of emerg-
ing technologies including but not limited to information technology, biotechnology, phar-
macology, and alternative energy generation.

Since we drew these conclusions, many changes have occurred in both engineering
education and engineering practice. Driving factors have been a contracting global econ-
omy, coupled with technological and environmental challenges associated with energy pro-
duction and energy conversion. The impact of a weak global economy on higher education
has been sobering. Colleges and universities around the world are being forced to set prior-
ities and answer tough questions as to which educational programs are crucial, and which
are not. Was our previous assessment of the future of engineering, including the relevance
of heat transfer, too optimistic?

Faced with economic realities, many colleges and universities have set clear priorities.
In recognition of its value and relevance to society, investment in engineering education
has, in many cases, increased. Pedagogically, there is renewed emphasis on the fundamen-
tal principles that are the foundation for lifelong learning. The important and sometimes
dominant role of heat transfer in many applications, particularly in conventional as well as in
alternative energy generation and concomitant environmental effects, has reaffirmed its
relevance. We believe our previous conclusions were correct: The future of engineering
is bright, and heat transfer is a topic that is crucial to address a broad array of technological
and environmental challenges.

In preparing this edition, we have sought to incorporate recent heat transfer research at
a level that is appropriate for an undergraduate student. We have strived to include new
examples and problems that motivate students with interesting applications, but whose
solutions are based firmly on fundamental principles. We have remained true to the peda-
gogical approach of previous editions by retaining a rigorous and systematic methodology
for problem solving. We have attempted to continue the tradition of providing a text that
will serve as a valuable, everyday resource for students and practicing engineers through-
out their careers.
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Approach and Organization

Previous editions of the text have adhered to four learning objectives:

1. The student should internalize the meaning of the terminology and physical principles
associated with heat transfer.

2. The student should be able to delineate pertinent transport phenomena for any process
or system involving heat transfer.

3. The student should be able to use requisite inputs for computing heat transfer rates
and/or material temperatures.

4. The student should be able to develop representative models of real processes and systems
and draw conclusions concerning process/system design or performance from the atten-
dant analysis.

Moreover, as in previous editions, specific learning objectives for each chapter are
clarified, as are means by which achievement of the objectives may be assessed. The sum-
mary of each chapter highlights key terminology and concepts developed in the chapter and
poses questions designed to test and enhance student comprehension.

It is recommended that problems involving complex models and/or exploratory, what-
if, and parameter sensitivity considerations be addressed using a computational equation-
solving package. To this end, the Interactive Heat Transfer (IHT) package available in pre-
vious editions has been updated. Specifically, a simplified user interface now delineates
between the basic and advanced features of the software. It has been our experience that
most students and instructors will use primarily the basic features of /HT. By clearly identi-
fying which features are advanced, we believe students will be motivated to use /HT on a
daily basis. A second software package, Finite Element Heat Transfer (FEHT), developed
by F-Chart Software (Madison, Wisconsin), provides enhanced capabilities for solving
two-dimensional conduction heat transfer problems.

To encourage use of IHT, a Quickstart User$ Guide has been installed in the soft-
ware. Students and instructors can become familiar with the basic features of /HT in
approximately one hour. It has been our experience that once students have read the
Quickstart guide, they will use /HT heavily, even in courses other than heat transfer.
Students report that JHT significantly reduces the time spent on the mechanics of lengthy
problem solutions, reduces errors, and allows more attention to be paid to substantive
aspects of the solution. Graphical output can be generated for homework solutions,
reports, and papers.

As in previous editions, some homework problems require a computer-based solution.
Other problems include both a hand calculation and an extension that is computer based.
The latter approach is time-tested and promotes the habit of checking a computer-generated
solution with a hand calculation. Once validated in this manner, the computer solution can
be utilized to conduct parametric calculations. Problems involving both hand- and com-
puter-generated solutions are identified by enclosing the exploratory part in a red rectangle,
as, for example, , , or . This feature also allows instructors who wish to limit
their assignments of computer-based problems to benefit from the richness of these prob-
lems without assigning their computer-based parts. Solutions to problems for which the
number is highlighted (for example, [1.26)) are entirely computer based.
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in the 7th Edition

Chapter-by-Chapter Conteni Changes In the previous edition, Chapter 1 Introduction
was modified to emphasize the relevance of heat transfer in various contemporary applica-
tions. Responding to today’s challenges involving energy production and its environmental
impact, an expanded discussion of the efficiency of energy conversion and the production of
greenhouse gases has been added. Chapter 1 has also been modified to embellish the com-
plementary nature of heat transfer and thermodynamics. The existing treatment of the first
law of thermodynamics is augmented with a new section on the relationship between heat
transfer and the second law of thermodynamics as well as the efficiency of heat engines.
Indeed, the influence of heat transfer on the efficiency of energy conversion is a recurring
theme throughout this edition.

The coverage of micro- and nanoscale effects in Chapter 2 Introduction to Conduction has
been updated, reflecting recent advances. For example, the description of the thermophysical
properties of composite materials is enhanced, with a new discussion of nanofluids. Chapter 3
One-Dimensional, Steady-State Conduction has undergone extensive revision and includes
new material on conduction in porous media, thermoelectric power generation, and micro- as
well as nanoscale systems. Inclusion of these new topics follows recent fundamental discover-
ies and is presented through the use of the thermal resistance network concept. Hence the
power and utility of the resistance network approach is further emphasized in this edition.

Chapter 4 Two-Dimensional, Steady-State Conduction has been reduced in length.
Today, systems of linear, algebraic equations are readily solved using standard computer
software or even handheld calculators. Hence the focus of the shortened chapter is on the
application of heat transfer principles to derive the systems of algebraic equations to be
solved and on the discussion and interpretation of results. The discussion of Gauss—Seidel
iteration has been moved to an appendix for instructors wishing to cover that material.

Chapter 5 Transient Conduction was substantially modified in the previous edition
and has been augmented in this edition with a streamlined presentation of the lumped-
capacitance method.

Chapter 6 Introduction to Convection includes clarification of how temperature-dependent
properties should be evaluated when calculating the convection heat transfer coefficient. The
fundamental aspects of compressible flow are introduced to provide the reader with guidelines
regarding the limits of applicability of the treatment of convection in the text.

Chapter 7 External Flow has been updated and reduced in length. Specifically, presen-
tation of the similarity solution for flow over a flat plate has been simplified. New results
for flow over noncircular cylinders have been added, replacing the correlations of previous
editions. The discussion of flow across banks of tubes has been shortened, eliminating
redundancy without sacrificing content.

Chapter 8 Internal Flow entry length correlations have been updated, and the discus-
sion of micro- and nanoscale convection has been modified and linked to the content of
Chapter 3.

Changes to Chapter 9 Free Convection include a new correlation for free convection
from flat plates, replacing a correlation from previous editions. The discussion of boundary
layer effects has been modified.

Aspects of condensation included in Chapter 10 Boiling and Condensation have been
updated to incorporate recent advances in, for example, external condensation on finned
tubes. The effects of surface tension and the presence of noncondensable gases in modifying
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condensation phenomena and heat transfer rates are elucidated. The coverage of forced con-
vection condensation and related enhancement techniques has been expanded, again reflecting
advances reported in the recent literature.

The content of Chapter 11 Heat Exchangers is experiencing a resurgence in interest
due to the critical role such devices play in conventional and alternative energy generation
technologies. A new section illustrates the applicability of heat exchanger analysis to heat
sink design and materials processing. Much of the coverage of compact heat exchangers
included in the previous edition was limited to a specific heat exchanger. Although general
coverage of compact heat exchangers has been retained, the discussion that is limited to the
specific heat exchanger has been relegated to supplemental material, where it is available to
instructors who wish to cover this topic in greater depth.

The concepts of emissive power, irradiation, radiosity, and net radiative flux are now
introduced early in Chapter 12 Radiation: Processes and Properties, allowing early assign-
ment of end-of-chapter problems dealing with surface energy balances and properties, as
well as radiation detection. The coverage of environmental radiation has undergone sub-
stantial revision, with the inclusion of separate discussions of solar radiation, the atmos-
pheric radiation balance, and terrestrial solar irradiation. Concern for the potential impact
of anthropogenic activity on the temperature of the earth is addressed and related to the
concepts of the chapter.

Much of the modification to Chapter 13 Radiation Exchange Between Surfaces empha-
sizes the difference between geometrical surfaces and radiative surfaces, a key concept that
is often difficult for students to appreciate. Increased coverage of radiation exchange
between multiple blackbody surfaces, included in older editions of the text, has been
returned to Chapter 13. In doing so, radiation exchange between differentially small sur-
faces is briefly introduced and used to illustrate the limitations of the analysis techniques
included in Chapter 13.

Chapter 14 Diffusion Mass Transfer was revised extensively for the previous edition,
and only modest changes have been made in this edition.

Problem Seis  Approximately 250 new end-of-chapter problems have been developed for
this edition. An effort has been made to include new problems that (a) are amenable to
short solutions or (b) involve finite-difference solutions. A significant number of solutions
to existing end-of-chapter problems have been modified due to the inclusion of the new
convection correlations in this edition.

Classroom Coverage

The content of the text has evolved over many years in response to a variety of factors.
Some factors are obvious, such as the development of powerful, yet inexpensive calculators
and software. There is also the need to be sensitive to the diversity of users of the text, both
in terms of (a) the broad background and research interests of instructors and (b) the wide
range of missions associated with the departments and institutions at which the text is used.
Regardless of these and other factors, it is important that the four previously identified
learning objectives be achieved.

Mindful of the broad diversity of users, the authors’ intent is not to assemble a text whose
content is to be covered, in entirety, during a single semester- or quarter-long course. Rather,
the text includes both (a) fundamental material that we believe must be covered and
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(b) optional material that instructors can use to address specific interests or that can be
covered in a second, intermediate heat transfer course. To assist instructors in preparing a
syllabus for a rst course in heat transfer , we have several recommendations.

Chapter 1 Introduction sets the stage for any course in heat transfer. It explains the
linkage between heat transfer and thermodynamics, and it reveals the relevance and rich-
ness of the subject. It should be covered in its entirety. Much of the content of Chapter 2
Introduction to Conduction is critical in a first course, especially Section 2.1 The Conduc-
tion Rate Equation, Section 2.3 The Heat Diffusion Equation, and Section 2.4 Boundary
and Initial Conditions. It is recommended that Chapter 2 be covered in its entirety.

Chapter 3 One-Dimensional, Steady-State Conduction includes a substantial amount of
optional material from which instructors can pick-and-choose or defer to a subsequent,
intermediate heat transfer course. The optional material includes Section 3.1.5 Porous
Media, Section 3.7 The Bioheat Equation, Section 3.8 Thermoelectric Power Generation,
and Section 3.9 Micro- and Nanoscale Conduction. Because the content of these sections is
not interlinked, instructors may elect to cover any or all of the optional material.

The content of Chapter 4 Two-Dimensional, Steady-State Conduction is important
because both (a) fundamental concepts and (b) powerful and practical solution techniques
are presented. We recommend that all of Chapter 4 be covered in any introductory heat
transfer course.

The optional material in Chapter 5 Transient Conduction is Section 5.9 Periodic Heat-
ing. Also, some instructors do not feel compelled to cover Section 5.10 Finite-Difference
Methods in an introductory course, especially if time is short.

The content of Chapter 6 Introduction to Convection is often difficult for students to
absorb. However, Chapter 6 introduces fundamental concepts and lays the foundation for
the subsequent convection chapters. It is recommended that all of Chapter 6 be covered in
an introductory course.

Chapter 7 External Flow introduces several important concepts and presents convec-
tion correlations that students will utilize throughout the remainder of the text and in subse-
quent professional practice. Sections 7.1 through 7.5 should be included in any first course
in heat transfer. However, the content of Section 7.6 Flow Across Banks of Tubes, Section
7.7 Impinging Jets, and Section 7.8 Packed Beds is optional. Since the content of these sec-
tions is not interlinked, instructors may select from any of the optional topics.

Likewise, Chapter 8 Internal Flow includes matter that is used throughout the remain-
der of the text and by practicing engineers. However, Section 8.7 Heat Transfer Enhance-
ment, and Section 8.8 Flow in Small Channels may be viewed as optional.

Buoyancy-induced flow and heat transfer is covered in Chapter 9 Free Convection.
Because free convection thermal resistances are typically large, they are often the dominant
resistance in many thermal systems and govern overall heat transfer rates. Therefore, most
of Chapter 9 should be covered in a first course in heat transfer. Optional material includes
Section 9.7 Free Convection Within Parallel Plate Channels and Section 9.9 Combined
Free and Forced Convection. In contrast to resistances associated with free convection,
thermal resistances corresponding to liquid-vapor phase change are typically small, and
they can sometimes be neglected. Nonetheless, the content of Chapter 10 Boiling and Con-
densation that should be covered in a first heat transfer course includes Sections 10.1
through 10.4, Sections 10.6 through 10.8, and Section 10.11. Section 10.5 Forced Convec-
tion Boiling may be material appropriate for an intermediate heat transfer course. Similarly,
Section 10.9 Film Condensation on Radial Systems and Section 10.10 Condensation in
Horizontal Tubes may be either covered as time permits or included in a subsequent heat
transfer course.
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We recommend that all of Chapter 11 Heat Exchangers be covered in a first heat trans-
fer course.

A distinguishing feature of the text, from its inception, is the in-depth coverage of radi-
ation heat transfer in Chapter 12 Radiation: Processes and Properties. The content of the
chapter is perhaps more relevant today than ever, with applications ranging from advanced
manufacturing, to radiation detection and monitoring, to environmental issues related to
global climate change. Although Chapter 12 has been reorganized to accommodate instruc-
tors who may wish to skip ahead to Chapter 13 after Section 12.4, we encourage instructors
to cover Chapter 12 in its entirety.

Chapter 13 Radiation Exchange Between Surfaces may be covered as time permits or
in an intermediate heat transfer course.

The material in Chapter 14 Diffusion Mass Transfer is relevant to many contemporary
technologies, particularly those involving materials synthesis, chemical processing, and
energy conversion. Emerging applications in biotechnology also exhibit strong diffusion
mass transfer effects. Time permitting, we encourage coverage of Chapter 14. However, if
only problems involving stationary media are of interest, Section 14.2 may be omitted or
included in a follow-on course.
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Supplemental and Web Site Material

The companion web site for the texts is www.wiley.com/college/bergman. By selecting one
of the two texts and clicking on the “student companion site” link, students may access the
Answers to Selected Exercises and the Supplemental Sections of the text. Supplemental
Sections are identified throughout the text with the icon shown in the margin to the left.

Material available for instructors only may also be found by selecting one of the two
texts at www.wiley.com/college/bergman and clicking on the “instructor companion site”
link. The available content includes the Solutions Manual, PowerPoint Slides that can be
used by instructors for lectures, and Electronic Versions of figures from the text for those
wishing to prepare their own materials for electronic classroom presentation. 7he Instructor
Solutions Manual is copyrighted material for use only by instructors who are requiring the
text for their course.

Interactive Heat Transfer 4.0/FEHT is available either with the text or as a separate
purchase. As described by the authors in the Approach and Organization, this simple-to-use
software tool provides modeling and computational features useful in solving many problems
in the text, and it enables rapid what-if and exploratory analysis of many types of problems.
Instructors interested in using this tool in their course can download the software from the
book’s web site at www.wiley.com/college/bergman. Students can download the software by
registering on the student companion site; for details, see the registration card provided in
this book. The software is also available as a stand-alone purchase at the web site. Any
questions can be directed to your local Wiley representative.

\(8/ This mouse icon identies Supplemental Sections and is used throughout the text .

'Excerpts from the Solutions Manual may be reproduced by instructors for distribution on a not-for-profit basis
for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted.
Any other reproduction or translation of the contents of the Solutions Manual beyond that permitted by Sections
107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
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area, m’

area of prime (unfinned) surface, m’

cross-sectional area, m”

fin profile area, m

nozzle area ratio

acceleration, m/s%; speed of sound, m/s

Biot number

Bond number

molar concentration, kmol/m?; heat capacity
rate, W/K

drag coefficient

friction coefficient

thermal capacitance, J/K

Confinement number

specific heat, J/kg - K; speed of light, m/s

specific heat at constant pressure, J/kg - K

specific heat at constant volume, J/kg - K

diameter, m

binary mass diffusivity, m?/s

bubble diameter, m

hydraulic diameter, m

diameter of gas molecule, nm

thermal plus mechanical energy, J; electric
potential, V; emissive power, W/m?

total energy, J

Eckert number

rate of energy generation, W

rate of energy transfer into a control volume, W

rate of energy transfer out of control volume, W

rate of increase of energy stored within a control
volume, W

thermal internal energy per unit mass, J/kg;
surface roughness, m

force, N; fraction of blackbody radiation in a
wavelength band; view factor

Ja
JE

Ji

ky
kY

Le

Fourier number

Froude number

friction factor; similarity variable

irradiation, W/m?; mass velocity, kg/s - m*

Grashof number

Graetz number

gravitational acceleration, m/s

nozzle height, m; Henry’s constant, bars

convection heat transfer coefficient, W/m?+ K;
Planck’s constant, J - s

latent heat of vaporization, J/kg

modified heat of vaporization, J/kg

latent heat of fusion, J/kg

convection mass transfer coefficient, m/s

radiation heat transfer coefficient, W/m? - K

electric current, A; radiation intensity, W/m? - sr

electric current density, A/m?; enthalpy per unit
mass, J/kg

radiosity, W/m?

Jakob number

diffusive molar flux of species i relative to the
mixture molar average velocity, kmol/s - m

diffusive mass flux of species 7 relative to the
mixture mass average velocity, kg/s - m?

Colburn j factor for heat transfer

Colburn j factor for mass transfer

thermal conductivity, W/m + K

Boltzmann’s constant, J/K

zero-order, homogeneous reaction rate
constant, kmol/s -m?

first-order, homogeneous reaction rate
constant, s~

first-order, surface reaction rate constant, m/s

length, m

Lewis number
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mass, kg

rate of transfer of mass for species, i, kg/s

rate of increase of mass of species i due to
chemical reactions, kg/s

rate at which mass enters a control volume, kg/s

rate at which mass leaves a control
volume, kg/s

rate of increase of mass stored within a
control volume, kg/s

molecular weight of species i, kg/kmol

Mach number

mass, kg

mass flow rate, kg/s

mass fraction of species i, p;/p

integer number

number of tubes in longitudinal and
transverse directions

Nusselt number

number of transfer units

molar transfer rate of species i relative to
fixed coordinates, kmol/s

molar flux of species i relative to fixed

coordinates, kmol/s + m?

molar rate of increase of species i per unit
volume due to chemical reactions,
kmol/s - m*

surface reaction rate of species i,
kmol/s - m?

Avogadro’s number

mass flux of species i relative to fixed
coordinates, kg/s + m*

mass rate of increase of species i per unit
volume due to chemical reactions,
kg/s - m®

power, W; perimeter, m

dimensionless longitudinal and transverse
pitch of a tube bank

Peclet number

Prandtl number

pressure, N/m>

energy transfer, J

heat transfer rate, W

rate of energy generation per unit
volume, W/m?

heat transfer rate per unit length, W/m

heat flux, W/m?

dimensionless conduction heat rate

cylinder radius, m; gas constant, J/kg - K

universal gas constant, J/kmol - K

Rayleigh number

Reynolds number

electric resistance, ()

fouling factor, m* - K/W

mass transfer resistance, s/m’

residual for the m, n nodal point

thermal resistance, K/'W

thermal contact resistance, K/'W

fin thermal resistance, K/W

R,, thermal resistance of fin array, K/'W
T, cylinder or sphere radius, m
o,z cylindrical coordinates
r, 0, ¢ spherical coordinates
S solubility, kmol/m?® - atm; shape factor for
two-dimensional conduction, m; nozzle
pitch, m; plate spacing, m; Seebeck
coefficient, V/K
S, solar constant, W/m?
Sp, Sz, S¢ diagonal, longitudinal, and transverse pitch
of a tube bank, m
Sc Schmidt number
Sh Sherwood number
St Stanton number
T temperature, K
t time, s
U overall heat transfer coefficient, W/m?- K;
internal energy, J
u, v, w mass average fluid velocity components, m/s
u* v* w* molar average velocity components, m/s
\%4 volume, m®; fluid velocity, m/s
v specific volume, m*/kg
w width of a slot nozzle, m
w rate at which work is performed, W
We Weber number
X vapor quality
X, Martinelli parameter
XY Z components of the body force per unit
volume, N/m?
X, ¥z rectangular coordinates, m
X, critical location for transition to turbulence, m
Xige concentration entry length, m
Xidn hydrodynamic entry length, m
Xias thermal entry length, m
X; mole fraction of species i, C;/C
V4 thermoelectric material property, K™
Greek Letters
@ thermal diffusivity, m?/s; accommodation
coefficient; absorptivity
B volumetric thermal expansion coefficient, K!
r mass flow rate per unit width in film
condensation, kg/s - m
k% ratio of specific heats
13 hydrodynamic boundary layer thickness, m
S, concentration boundary layer thickness, m
3, thermal penetration depth, m
o, thermal boundary layer thickness, m
& emissivity; porosity; heat exchanger
effectiveness
& fin effectiveness
n thermodynamic efficiency; similarity variable
ny fin efficiency
n, overall efficiency of fin array
0 zenith angle, rad; temperature difference, K
K absorption coefficient, m™!
A wavelength, um
Amip mean free path length, nm
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" viscosity, kg/s - m

v kinematic viscosity, m%s; frequency of
radiation, s~!

p mass density, kg/m?; reflectivity

Pe electric resistivity, {}/m

o Stefan—Boltzmann constant, W/m? - K*; electrical
conductivity, 1/€) - m; normal viscous stress,
N/m?; surface tension, N/m

[ viscous dissipation function, s>

© volume fraction

[ azimuthal angle, rad

1] stream function, m*/s

T shear stress, N/m?; transmissivity

w solid angle, sr; perfusion rate, s7!

Subscripts

A,B species in a binary mixture

abs absorbed

am arithmetic mean

atm atmospheric

b base of an extended surface; blackbody

C carnot

c cross-sectional; concentration; cold fluid; critical

cr critical insulation thickness

cond conduction

conv convection

CF counterflow

D diameter; drag

dif diffusion

e excess; emission; electron

evap evaporation

f fluid properties; fin conditions; saturated liquid
conditions

fc forced convection

fd fully developed conditions

g saturated vapor conditions

H heat transfer conditions

XXx111

h hydrodynamic; hot fluid; helical

i general species designation; inner surface of an
annulus; initial condition; tube inlet
condition; incident radiation

L based on characteristic length

l saturated liquid conditions

lat latent energy

Im log mean condition

m mean value over a tube cross section

max maximum

0 center or midplane condition; tube outlet
condition; outer

P momentum

ph phonon

R reradiating surface

r, ref reflected radiation

rad radiation

S solar conditions

K surface conditions; solid properties;
saturated solid conditions

sat saturated conditions

sens sensible energy

sky sky conditions

ss steady state

sur surroundings

t thermal

tr transmitted

v saturated vapor conditions

X local conditions on a surface

A spectral

o0 free stream conditions

Superscripts

* molar average; dimensionless quantity

Overbar

surface average conditions; time mean
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2 Chapter 1 m Introduction

From the study of thermodynamics, you have learned that energy can be transferred by
interactions of a system with its surroundings. These interactions are called work and heat.
However, thermodynamics deals with the end states of the process during which an interac-
tion occurs and provides no information concerning the nature of the interaction or the time
rate at which it occurs. The objective of this text is to extend thermodynamic analysis
through the study of the modes of heat transfer and through the development of relations to
calculate heat transfer rates.

In this chapter we lay the foundation for much of the material treated in the text. We do
so by raising several questions: What is heat transfer? How is heat transferred? Why is it
important? One objective is to develop an appreciation for the fundamental concepts and
principles that underlie heat transfer processes. A second objective is to illustrate the manner
in which a knowledge of heat transfer may be used with the first law of thermodynamics
(conservation of energy) to solve problems relevant to technology and society.

1.1 What and How?

A simple, yet general, definition provides sufficient response to the question: What is heat
transfer?

Heat transfer (or heat) is thermal energy in transit due to a spatial temperature difference.

Whenever a temperature difference exists in a medium or between media, heat transfer
must occur.

As shown in Figure 1.1, we refer to different types of heat transfer processes as modes.
When a temperature gradient exists in a stationary medium, which may be a solid or a fluid,
we use the term conduction to refer to the heat transfer that will occur across the medium.
In contrast, the term convection refers to heat transfer that will occur between a surface and
a moving fluid when they are at different temperatures. The third mode of heat transfer is
termed thermal radiation. All surfaces of finite temperature emit energy in the form of
electromagnetic waves. Hence, in the absence of an intervening medium, there is net heat
transfer by radiation between two surfaces at different temperatures.

Conduction through a solid Convection from a surface Net radiation heat exchange
or a stationary fluid to a moving fluid between two surfaces
T, > T T.>T.,
T, 1o2 T, s Surface, T,

Moving fluid, 7. \E:

v = i 4Ny

rT.; a <—

Surface, T,

Ficure 1.1  Conduction, convection, and radiation heat transfer modes.
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1.2 Physical Origins and Rate Equations

As engineers, it is important that we understand the physical mechanisms which underlie
the heat transfer modes and that we be able to use the rate equations that quantify the
amount of energy being transferred per unit time.

1.2.1 Conduction

At mention of the word conduction, we should immediately conjure up concepts of atomic
and molecular activity because processes at these levels sustain this mode of heat transfer.
Conduction may be viewed as the transfer of energy from the more energetic to the less
energetic particles of a substance due to interactions between the particles.

The physical mechanism of conduction is most easily explained by considering a gas and
using ideas familiar from your thermodynamics background. Consider a gas in which a tem-
perature gradient exists, and assume that there is no bulk, or macroscopic, motion. The gas
may occupy the space between two surfaces that are maintained at different temperatures, as
shown in Figure 1.2. We associate the temperature at any point with the energy of gas mole-
cules in proximity to the point. This energy is related to the random translational motion, as
well as to the internal rotational and vibrational motions, of the molecules.

Higher temperatures are associated with higher molecular energies. When neighboring
molecules collide, as they are constantly doing, a transfer of energy from the more energetic
to the less energetic molecules must occur. In the presence of a temperature gradient, energy
transfer by conduction must then occur in the direction of decreasing temperature. This would
be true even in the absence of collisions, as is evident from Figure 1.2. The hypothetical plane
at x, is constantly being crossed by molecules from above and below due to their random
motion. However, molecules from above are associated with a higher temperature than those
from below, in which case there must be a net transfer of energy in the positive x-direction.
Collisions between molecules enhance this energy transfer. We may speak of the net transfer
of energy by random molecular motion as a diffusion of energy.

The situation is much the same in liquids, although the molecules are more closely
spaced and the molecular interactions are stronger and more frequent. Similarly, in a solid,
conduction may be attributed to atomic activity in the form of lattice vibrations. The modern

T T,>T,

O "
“““ RN SF i

T,

FIGURE 1.2 Association of conduction heat transfer with diffusion of energy due to molecular
aclivity.
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" T(x)

T,

FicUre 1.3 One-dimensional heat transfer by conduction
=L — (diffusion of energy).

view is to ascribe the energy transfer to lattice waves induced by atomic motion. In an electri-
cal nonconductor, the energy transfer is exclusively via these lattice waves; in a conductor, it
is also due to the translational motion of the free electrons. We treat the important properties
associated with conduction phenomena in Chapter 2 and in Appendix A.

Examples of conduction heat transfer are legion. The exposed end of a metal spoon
suddenly immersed in a cup of hot coffee is eventually warmed due to the conduction of
energy through the spoon. On a winter day, there is significant energy loss from a heated
room to the outside air. This loss is principally due to conduction heat transfer through the
wall that separates the room air from the outside air.

Heat transfer processes can be quantified in terms of appropriate rate equations. These
equations may be used to compute the amount of energy being transferred per unit time.
For heat conduction, the rate equation is known as Fourier$ law. For the one-dimensional
plane wall shown in Figure 1.3, having a temperature distribution 7(x), the rate equation is
expressed as

qx dx

The heat ux ¢, (W/m?) is the heat transfer rate in the x-direction per unit area perpendic-
ular to the direction of transfer, and it is proportional to the temperature gradient, dT/dx,
in this direction. The parameter k is a transport property known as the thermal conductiv-
ity (W/m-K) and is a characteristic of the wall material. The minus sign is a consequence
of the fact that heat is transferred in the direction of decreasing temperature. Under the
steady-state conditions shown in Figure 1.3, where the temperature distribution is linear,
the temperature gradient may be expressed as

n— g dl (1.1)

ar _ I, — T
dx L
and the heat flux is then
Tz — T1
" — k
qx I
or
T, —T, AT
"=k———=k— 1.2
qx i3 i3 (1.2)

Note that this equation provides a heat ux , that is, the rate of heat transfer per unit area.
The heat rate by conduction, ¢g,(W), through a plane wall of area A is then the product
of the flux and the area, g, = ¢’ - A.
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W4 *| ExampLE 1.1

The wall of an industrial furnace is constructed from 0.15-m-thick fireclay brick having a
thermal conductivity of 1.7 W/m+ K. Measurements made during steady-state operation
reveal temperatures of 1400 and 1150 K at the inner and outer surfaces, respectively. What
is the rate of heat loss through a wall that is 0.5 m X 1.2 m on a side?

SOLUTION
|

Known: Steady-state conditions with prescribed wall thickness, area, thermal conductiv-
ity, and surface temperatures.

Find: Wall heat loss.

Schematic: /

k= 1.7 Wim-K
T, = 1400 K / T,=1150K

Wall area, A

Assumptions:
1. Steady-state conditions.
2. One-dimensional conduction through the wall.
3. Constant thermal conductivity.

Analysis:  Since heat transfer through the wall is by conduction, the heat flux may be
determined from Fourier’s law. Using Equation 1.2, we have

AT 250K

»= kAT _ | 7W/m K X — 2833 W/m?
=57 m 0.15m m

The heat flux represents the rate of heat transfer through a section of unit area, and it is uni-
form (invariant) across the surface of the wall. The heat loss through the wall of area
A = H X Wis then

g, = (HW) ¢/ = (0.5m X 1.2 m) 2833 W/m? =1700 W <

Comments: Note the direction of heat flow and the distinction between heat flux and
heat rate.

*This icon identifies examples that are available in tutorial form in the Interactive Heat Transfer (IHT) software that
accompanies the text. Each tutorial is brief and illustrates a basic function of the software. /HT can be used to solve
simultaneous equations, perform parameter sensitivity studies, and graph the results. Use of /HT will reduce the time
spent solving more complex end-of-chapter problems.

F
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1.2.2 Convection

The convection heat transfer mode is comprised of two mechanisms. In addition to energy
transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or
macroscopic, motion of the fluid. This fluid motion is associated with the fact that, at any
instant, large numbers of molecules are moving collectively or as aggregates. Such motion, in
the presence of a temperature gradient, contributes to heat transfer. Because the molecules
in the aggregate retain their random motion, the total heat transfer is then due to a superpo-
sition of energy transport by the random motion of the molecules and by the bulk motion of
the fluid. The term convection is customarily used when referring to this cumulative trans-
port, and the term advection refers to transport due to bulk fluid motion.

We are especially interested in convection heat transfer, which occurs between a fluid
in motion and a bounding surface when the two are at different temperatures. Consider
fluid flow over the heated surface of Figure 1.4. A consequence of the fluid—surface interac-
tion is the development of a region in the fluid through which the velocity varies from zero
at the surface to a finite value u., associated with the flow. This region of the fluid is known
as the hydrodynamic, or velocity, boundary layer. Moreover, if the surface and flow tem-
peratures differ, there will be a region of the fluid through which the temperature varies
from T, at y =0 to T, in the outer flow. This region, called the thermal boundary layer,
may be smaller, larger, or the same size as that through which the velocity varies. In any
case, if T, > T, convection heat transfer will occur from the surface to the outer flow.

The convection heat transfer mode is sustained both by random molecular motion and
by the bulk motion of the fluid within the boundary layer. The contribution due to random
molecular motion (diffusion) dominates near the surface where the fluid velocity is low. In
fact, at the interface between the surface and the fluid (y = 0), the fluid velocity is zero, and
heat is transferred by this mechanism only. The contribution due to bulk fluid motion origi-
nates from the fact that the boundary layer grows as the flow progresses in the x-direction.
In effect, the heat that is conducted into this layer is swept downstream and is eventually
transferred to the fluid outside the boundary layer. Appreciation of boundary layer phenom-
ena is essential to understanding convection heat transfer. For this reason, the discipline of
fluid mechanics will play a vital role in our later analysis of convection.

Convection heat transfer may be classified according to the nature of the flow. We speak
of forced convection when the flow is caused by external means, such as by a fan, a pump, or
atmospheric winds. As an example, consider the use of a fan to provide forced convection
air cooling of hot electrical components on a stack of printed circuit boards (Figure 1.5a). In
contrast, for free (or natural) convection, the flow is induced by buoyancy forces, which are
due to density differences caused by temperature variations in the fluid. An example is the
free convection heat transfer that occurs from hot components on a vertical array of circuit

y " Fluid y .
R
> b
- iy Velocity Temperature
distribution distribution
u(y) q" 1(y)
T :
X
L »uy Heated L Ty FIGURE 1.4 Boundary layer development in

surface convection heat transfer.
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boards in air (Figure 1.5b). Air that makes contact with the components experiences an
increase in temperature and hence a reduction in density. Since it is now lighter than the sur-
rounding air, buoyancy forces induce a vertical motion for which warm air ascending from
the boards is replaced by an inflow of cooler ambient air.

While we have presumed pure forced convection in Figure 1.5a and pure natural con-
vection in Figure 1.5, conditions corresponding to mixed (combined) forced and natural
convection may exist. For example, if velocities associated with the flow of Figure 1.5a are
small and/or buoyancy forces are large, a secondary flow that is comparable to the imposed
forced flow could be induced. In this case, the buoyancy-induced flow would be normal to
the forced flow and could have a significant effect on convection heat transfer from the
components. In Figure 1.5b, mixed convection would result if a fan were used to force air
upward between the circuit boards, thereby assisting the buoyancy flow, or downward,
thereby opposing the buoyancy flow.

We have described the convection heat transfer mode as energy transfer occurring
within a fluid due to the combined effects of conduction and bulk fluid motion. Typically,
the energy that is being transferred is the sensible, or internal thermal, energy of the fluid.
However, for some convection processes, there is, in addition, latent heat exchange. This
latent heat exchange is generally associated with a phase change between the liquid and
vapor states of the fluid. Two special cases of interest in this text are boiling and condensa-
tion. For example, convection heat transfer results from fluid motion induced by vapor bub-
bles generated at the bottom of a pan of boiling water (Figure 1.5¢) or by the condensation
of water vapor on the outer surface of a cold water pipe (Figure 1.5d).

Buoyancy-driven
flow

Forced i 7 — Hot components =l @ 3
flow / on printed
— BEEm circuit boards I q"
_ sl e
—h-—= pEEDHE =
— @AEEEN = B A

w1

Moist air

q'"’ Water
droplets
i Cold

water 3 N

r ° 0 0 o Iy

Vapor —> (] o 1\
bubbles O C Y

Water

Hot plate

(c) (d)

FicURE 1.5 Convection heat transfer processes. (a) Forced convection. (b) Natural
convection. (¢) Boiling. (d) Condensation.
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TABLE 1.1 Typical values of the
convection heat transfer coefficient

h

Process (W/m? - K)
Free convection

Gases 2-25

Liquids 50-1000
Forced convection

Gases 25-250

Liquids 100-20,000
Convection with phase change

Boiling or condensation 2500-100,000

Regardless of the nature of the convection heat transfer process, the appropriate rate
equation is of the form

q" = NI, — T.) (1.3a)

where ¢”, the convective heat ux (W/m?), is proportional to the difference between the sur-
face and fluid temperatures, 7, and T, respectively. This expression is known as Newfons
law of cooling, and the parameter 4 (W/m? - K) is termed the convection heat transfer coef-
cient. This coefficient depends on conditions in the boundary layer, which are influenced by
surface geometry, the nature of the fluid motion, and an assortment of fluid thermodynamic
and transport properties.

Any study of convection ultimately reduces to a study of the means by which z may be
determined. Although consideration of these means is deferred to Chapter 6, convection
heat transfer will frequently appear as a boundary condition in the solution of conduction
problems (Chapters 2 through 5). In the solution of such problems we presume 4 to be
known, using typical values given in Table 1.1.

When Equation 1.3a is used, the convection heat flux is presumed to be positive if heat
is transferred from the surface (T, > T,,) and negative if heat is transferred o the surface
(T, > T,). However, nothing precludes us from expressing Newton’s law of cooling as

q"=hT,—T,) (1.3b)

in which case heat transfer is positive if it is to the surface.

1.2.3 Radiation

Thermal radiation is energy emitted by matter that is at a nonzero temperature. Although
we will focus on radiation from solid surfaces, emission may also occur from liquids and
gases. Regardless of the form of matter, the emission may be attributed to changes in the
electron configurations of the constituent atoms or molecules. The energy of the radiation
field is transported by electromagnetic waves (or alternatively, photons). While the transfer
of energy by conduction or convection requires the presence of a material medium, radia-
tion does not. In fact, radiation transfer occurs most efficiently in a vacuum.

Consider radiation transfer processes for the surface of Figure 1.6a. Radiation that is
emitted by the surface originates from the thermal energy of matter bounded by the surface,
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and the rate at which energy is released per unit area (W/m?) is termed the surface emissive
power, E. There is an upper limit to the emissive power, which is prescribed by the
StefanBoltzmann law

E,=oT! (1.4)

where 7, is the absolute temperature (K) of the surface and o is the Stefan—
Boltzmann constant (o = 5.67 X 10~® W/m? - K*). Such a surface is called an ideal radiator
or blackbody.

The heat flux emitted by a real surface is less than that of a blackbody at the same tem-

perature and is given by
E = goT? (1.5)

where ¢ is a radiative property of the surface termed the emissivity. With values in the
range 0 = ¢ = 1, this property provides a measure of how efficiently a surface emits energy
relative to a blackbody. It depends strongly on the surface material and finish, and repre-
sentative values are provided in Appendix A.

Radiation may also be incident on a surface from its surroundings. The radiation may
originate from a special source, such as the sun, or from other surfaces to which the surface
of interest is exposed. Irrespective of the source(s), we designate the rate at which all such
radiation is incident on a unit area of the surface as the irradiation G (Figure 1.6a).

A portion, or all, of the irradiation may be absorbed by the surface, thereby increasing
the thermal energy of the material. The rate at which radiant energy is absorbed per unit
surface area may be evaluated from knowledge of a surface radiative property termed the
absorptivity «. That is,

Gy = aG (1.6)

where 0=a=1. If « <1 and the surface is opaque, portions of the irradiation are
reected. 1If the surface is semitransparent, portions of the irradiation may also be transmitted.
However, whereas absorbed and emitted radiation increase and reduce, respectively, the
thermal energy of matter, reflected and transmitted radiation have no effect on this energy.
Note that the value of « depends on the nature of the irradiation, as well as on the surface
itself. For example, the absorptivity of a surface to solar radiation may differ from its
absorptivity to radiation emitted by the walls of a furnace.

¢ E B Surroundings B B
?1& /qconv at Tsur qrar\ /‘Iconv

Surface of emissivity Surface of emissivity T,>Tg,, T,>T
&, absorptivity «, and &=a,area A, and
temperature T temperature T

(a) (b)

FIGURE 1.6 Radiation exchange: (a) at a surface and (b) between a surface and large
surroundings.



10

AT

Chapter 1 m Introduction

In many engineering problems (a notable exception being problems involving solar radia-
tion or radiation from other very high temperature sources), liquids can be considered opaque
to radiation heat transfer, and gases can be considered transparent to it. Solids can be opaque
(as is the case for metals) or semitransparent (as is the case for thin sheets of some polymers
and some semiconducting materials).

A special case that occurs frequently involves radiation exchange between a small sur-
face at T, and a much larger, isothermal surface that completely surrounds the smaller one
(Figure 1.6b). The surroundings could, for example, be the walls of a room or a furnace
whose temperature T, differs from that of an enclosed surface (7, # T,). We will show in
Chapter 12 that, for such a condition, the irradiation may be approximated by emission from
a blackbody at T, in which case G = oT4,. If the surface is assumed to be one for which
a = & (a gray surface), the net rate of radiation heat transfer from the surface, expressed per
unit area of the surface, is

% = ¢E/(T,) — aG = ea(T* — T) (1.7)

Graa =
This expression provides the difference between thermal energy that is released due to radi-
ation emission and that gained due to radiation absorption.
For many applications, it is convenient to express the net radiation heat exchange in
the form

Grad = hIA(TS - Tsur) (18)
where, from Equation 1.7, the radiation heat transfer coefcient h , is
h=eo(T, + T )T + T3 (1.9)

Here we have modeled the radiation mode in a manner similar to convection. In this sense we
have linearized the radiation rate equation, making the heat rate proportional to a temperature
difference rather than to the difference between two temperatures to the fourth power.
Note, however, that &, depends strongly on temperature, whereas the temperature depen-
dence of the convection heat transfer coefficient 4 is generally weak.

The surfaces of Figure 1.6 may also simultaneously transfer heat by convection to
an adjoining gas. For the conditions of Figure 1.6b, the total rate of heat transfer from the
surface is then

9 = 9conv + Grad — hA(Ts - TOO) + EAO-(T34 - TSAI‘_II‘) (110)

EXAMPLE 1.2

An uninsulated steam pipe passes through a room in which the air and walls are at 25°C.
The outside diameter of the pipe is 70 mm, and its surface temperature and emissivity are
200°C and 0.8, respectively. What are the surface emissive power and irradiation? If the
coefficient associated with free convection heat transfer from the surface to the air is
15 W/m? - K, what is the rate of heat loss from the surface per unit length of pipe?

SOLUTION

Known: Uninsulated pipe of prescribed diameter, emissivity, and surface temperature in
a room with fixed wall and air temperatures.



1.2 m Physical Origins and Rate Equations 11

Find:
1. Surface emissive power and irradiation.

2. Pipe heat loss per unit length, g'.

Schematic:

Assumptions:
1. Steady-state conditions.

2. Radiation exchange between the pipe and the room is between a small surface and a
much larger enclosure.

3. The surface emissivity and absorptivity are equal.

Analysis:

1. The surface emissive power may be evaluated from Equation 1.5, while the irradiation
corresponds to G = o T2 . Hence

E =0T} =0.8(5.67 X 1073 W/m? - K*)(473 K)* = 2270 W/m? <
G=0T: =5.67X108W/m? - K* (298 K)* = 447 W/m? <

2. Heat loss from the pipe is by convection to the room air and by radiation exchange
with the walls. Hence, ¢ = ¢ gy + ¢rq @and from Equation 1.10, with A = 7wDL,

g = h(wDLY(T, — T.,) + e(wDL)o(T* — T2

The heat loss per unit length of pipe is then
q = % =15 W/m*- K(7r X 0.07 m)(200 — 25)°C
+ 0.8(7 X 0.07 m) 5.67 X 10~ W/m? - K* (473* — 298%) K*
qg' =577 W/m + 421 W/m = 998 W/m <

Comments:

1. Note that temperature may be expressed in units of °C or K when evaluating the tempera-
ture difference for a convection (or conduction) heat transfer rate. However, temperature
must be expressed in kelvins (K) when evaluating a radiation transfer rate.
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2. The net rate of radiation heat transfer from the pipe may be expressed as

Gra = ™D (E —aG)
gl =X 0.07m (2270 — 0.8 X 447) W/m? = 421 W/m

3. In this situation, the radiation and convection heat transfer rates are comparable because
T, is large compared to Ty, and the coefficient associated with free convection is small.
For more moderate values of T and the larger values of & associated with forced con-
vection, the effect of radiation may often be neglected. The radiation heat transfer coef-
ficient may be computed from Equation 1.9. For the conditions of this problem, its
value is 4, = 11 W/m? - K.

F

1.2.4 The Thermal Resistance Concept

The three modes of heat transfer were introduced in the preceding sections. As is evident
from Equations 1.2, 1.3, and 1.8, the heat transfer rate can be expressed in the form

AT
= gfh =2 1.11
q9=q R (1.11)

where AT is a relevant temperature difference and A is the area normal to the direction of heat
transfer. The quantity R, is called a thermal resistance and takes different forms for the three
different modes of heat transfer. For example, Equation 1.2 may be multiplied by the area A
and rewritten as ¢, = AT/R, ., where R,. = L/kA is a thermal resistance associated with con-
duction, having the units K/W. The thermal resistance concept will be considered in detail in
Chapter 3 and will be seen to have great utility in solving complex heat transfer problems.

1.3 Relationship to Thermodynamics

The subjects of heat transfer and thermodynamics are highly complementary and interre-
lated, but they also have fundamental differences. If you have taken a thermodynamics
course, you are aware that heat exchange plays a vital role in the first and second laws of
thermodynamics because it is one of the primary mechanisms for energy transfer between a
system and its surroundings. While thermodynamics may be used to determine the amount
of energy required in the form of heat for a system to pass from one state to another, it con-
siders neither the mechanisms that provide for heat exchange nor the methods that exist for
computing the rate of heat exchange. The discipline of heat transfer specifically seeks to
quantify the rate at which heat is exchanged through the rate equations expressed, for
example, by Equations 1.2, 1.3, and 1.7. Indeed, heat transfer principles often enable the
engineer to implement the concepts of thermodynamics. For example, the actual size of a
power plant to be constructed cannot be determined from thermodynamics alone; the prin-
ciples of heat transfer must also be invoked at the design stage.

The remainder of this section considers the relationship of heat transfer to thermody-
namics. Since the rst law of thermodynamics (the law of conservation of energy) provides
a useful, often essential, starting point for the solution of heat transfer problems, Section
1.3.1 will provide a development of the general formulations of the first law. The ideal
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(Carnot) efficiency of a heat engine, as determined by the second law of thermodynamics
will be reviewed in Section 1.3.2. It will be shown that a realistic description of the heat
transfer between a heat engine and its surroundings further limits the actual efficiency of a
heat engine.

1.3.1 Relationship to the First Law of Thermodynamies
(Conservation of Energy)

At its heart, the first law of thermodynamics is simply a statement that the total energy of a
system is conserved, and therefore the only way that the amount of energy in a system can
change is if energy crosses its boundaries. The first law also addresses the ways in which
energy can cross the boundaries of a system. For a closed system (a region of fixed mass),
there are only two ways: heat transfer through the boundaries and work done on or by the sys-
tem. This leads to the following statement of the first law for a closed system, which is famil-
iar if you have taken a course in thermodynamics:

AEY'=Q—-W (1.12a)

where AEY" is the change in the total energy stored in the system, Q is the net heat transferred
to the system, and W is the net work done by the system. This is schematically illustrated in
Figure 1.7a.

The first law can also be applied to a control volume (or open system), a region of space
bounded by a control surface through which mass may pass. Mass entering and leaving the
control volume carries energy with it; this process, termed energy advection, adds a third
way in which energy can cross the boundaries of a control volume. To summarize, the first
law of thermodynamics can be very simply stated as follows for both a control volume and a
closed system.

First Law of Thermodynamics over a Time Interval (A7)

The increase in the amount of energy stored in a control volume must equal the amount of energy
that enters the control volume, minus the amount of energy that leaves the control volume.

In applying this principle, it is recognized that energy can enter and leave the control
volume due to heat transfer through the boundaries, work done on or by the control volume,
and energy advection.

The first law of thermodynamics addresses total energy, which consists of kinetic and
potential energies (together known as mechanical energy) and internal energy. Internal energy
can be further subdivided into thermal energy (which will be defined more carefully later)

e —————
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Ficure 1.7  Conservation of energy: (a) for a closed system over a time interval
and (b) for a control volume at an instant.
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and other forms of internal energy, such as chemical and nuclear energy. For the study of heat
transfer, we wish to focus attention on the thermal and mechanical forms of energy. We must
recognize that the sum of thermal and mechanical energy is not conserved, because conversion
can occur between other forms of energy and thermal or mechanical energy. For example, if a
chemical reaction occurs that decreases the amount of chemical energy in the system, it will
result in an increase in the thermal energy of the system. If an electric motor operates within
the system, it will cause conversion from electrical to mechanical energy. We can think of such
energy conversions as resulting in thermal or mechanical energy generation (which can be
either positive or negative). So a statement of the first law that is well suited for heat transfer
analysis is:

Thermal and Mechanical Energy Equation over a Time Interval (Af)

The increase in the amount of thermal and mechanical energy stored in the control volume must
equal the amount of thermal and mechanical energy that enters the control volume, minus the
amount of thermal and mechanical energy that leaves the control volume, plus the amount of ther-
mal and mechanical energy that is generated within the control volume.

This expression applies over a time interval At, and all the energy terms are measured in
joules. Since the first law must be satisfied at each and every instant of time ¢, we can also
formulate the law on a rate basis. That is, at any instant, there must be a balance between all
energy rates, as measured in joules per second (W). In words, this is expressed as follows:

Thermal and Mechanical Energy Equation at an Instant (7)

The rate of increase of thermal and mechanical energy stored in the control volume must equal the
rate at which thermal and mechanical energy enters the control volume, minus the rate at which
thermal and mechanical energy leaves the control volume, plus the rate at which thermal and
mechanical energy is generated within the control volume.

If the inflow and generation of thermal and mechanical energy exceed the outflow, the amount
of thermal and mechanical energy stored (accumulated) in the control volume must increase. If
the converse is true, thermal and mechanical energy storage must decrease. If the inflow and
generation equal the outflow, a steady-state condition must prevail such that there will be no
change in the amount of thermal and mechanical energy stored in the control volume.

We will now define symbols for each of the energy terms so that the boxed statements
can be rewritten as equations. We let E stand for the sum of thermal and mechanical energy
(in contrast to the symbol E* for total energy). Using the subscript st to denote energy stored
in the control volume, the change in thermal and mechanical energy stored over the time
interval At is then AE. The subscripts in and out refer to energy entering and leaving the
control volume. Finally, thermal and mechanical energy generation is given the symbol E,.
Thus, the first boxed statement can be written as:

AE = E,— E, +E, (1.12b)

Next, using a dot over a term to indicate a rate, the second boxed statement becomes:

dE,
Estsﬁ = Ey— E,ut+E, (1.12¢)
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This expression is illustrated schematically in Figure 1.7b.

Equations 1.12b,c provide important and, in some cases, essential tools for solving heat
transfer problems. Every application of the first law must begin with the identification of
an appropriate control volume and its control surface, to which an analysis is subsequently
applied. The first step is to indicate the control surface by drawing a dashed line. The second
step is to decide whether to perform the analysis for a time interval Ar (Equation 1.12b) or
on a rate basis (Equation 1.12c). This choice depends on the objective of the solution and on
how information is given in the problem. The next step is to identify the energy terms that
are relevant in the problem you are solving. To develop your confidence in taking this last
step, the remainder of this section is devoted to clarifying the following energy terms:

* Stored thermal and mechanical energy, E.

¢ Thermal and mechanical energy generation, E,.

e Thermal and mechanical energy transport across the control surfaces, that is, the inflow
and outflow terms, E;, and E .

In the statement of the first law (Equation 1.12a), the total energy, E'*, consists of Kinetic
energy (KE = '2mV?, where m and V are mass and velocity, respectively), potential energy
(PE = mgz, where g is the gravitational acceleration and z is the vertical coordinate), and
internal energy (U). Mechanical energy is defined as the sum of kinetic and potential energy.
Most often in heat transfer problems, the changes in kinetic and potential energy are small
and can be neglected. The internal energy consists of a sensible component, which accounts
for the translational, rotational, and/or vibrational motion of the atoms/molecules comprising
the matter; a latent component, which relates to intermolecular forces influencing phase
change between solid, liquid, and vapor states; a chemical component, which accounts for
energy stored in the chemical bonds between atoms; and a nuclear component, which
accounts for the binding forces in the nucleus.

For the study of heat transfer, we focus attention on the sensible and latent components
of the internal energy (U, and U, respectively), which are together referred to as ther-
mal energy, U,. The sensible energy is the portion that we associate mainly with changes in
temperature (although it can also depend on pressure). The latent energy is the component
we associate with changes in phase. For example, if the material in the control volume
changes from solid to liquid (melting) or from liquid to vapor (vaporization, evaporation,
boiling), the latent energy increases. Conversely, if the phase change is from vapor to liquid
(condensation) or from liquid to solid (solidication, freezing ), the latent energy decreases.
Obviously, if no phase change is occurring, there is no change in latent energy, and this
term can be neglected.

Based on this discussion, the stored thermal and mechanical energy is given by E, =
KE + PE + U, where U, = Ug,, + U),. In many problems, the only relevant energy term
will be the sensible energy, that is, Ey = Ul

The energy generation term is associated with conversion from some other form of
internal energy (chemical, electrical, electromagnetic, or nuclear) to thermal or mechanical
energy. It is a volumetric phenomenon. That is, it occurs within the control volume and is
generally proportional to the magnitude of this volume. For example, an exothermic chemi-
cal reaction may be occurring, converting chemical energy to thermal energy. The net
effect is an increase in the thermal energy of the matter within the control volume. Another
source of thermal energy is the conversion from electrical energy that occurs due to resis-
tance heating when an electric current is passed through a conductor. That is, if an electric
current / passes through a resistance R in the control volume, electrical energy is dissipated
at a rate I’R, which corresponds to the rate at which thermal energy is generated (released)
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within the volume. In all applications of interest in this text, if chemical, electrical, or
nuclear effects exist, they are treated as sources (or sinks, which correspond to negative
sources) of thermal or mechanical energy and hence are included in the generation terms of
Equations 1.12b,c.

The inflow and outflow terms are surface phenomena. That is, they are associated
exclusively with processes occurring at the control surface and are generally proportional to
the surface area. As discussed previously, the energy inflow and outflow terms include heat
transfer (which can be by conduction, convection, and/or radiation) and work interactions
occurring at the system boundaries (e.g., due to displacement of a boundary, a rotating shaft,
and/or electromagnetic effects). For cases in which mass crosses the control volume bound-
ary (e.g., for situations involving fluid flow), the inflow and outflow terms also include
energy (thermal and mechanical) that is advected (carried) by mass entering and leaving the
control volume. For instance, if the mass flow rate entering through the boundary is 71, then
the rate at which thermal and mechanical energy enters with the flow is 7 (i, + "2V + gz),
where u, is the thermal energy per unit mass.

When the first law is applied to a control volume with fluid crossing its boundary, it is
customary to divide the work term into two contributions. The first contribution, termed
ow work , is associated with work done by pressure forces moving fluid through the
boundary. For a unit mass, the amount of work is equivalent to the product of the pressure
and the specific volume of the fluid (pv). The symbol W is traditionally used for the rate at
which the remaining work (not including flow work) is perfomed. If operation is under
steady-state conditions (dE/dt = 0) and if there is no thermal or mechanical energy gener-
ation, Equation 1.12¢ reduces to the following form of the steady-flow energy equation (see
Figure 1.8), which will be familiar if you have taken a thermodynamics course:

m(u, + pv + K V*+ g2), — m(u, + pv + KV?* 4+ g2)ou T g — W=0 (1.12d)

Terms within the parentheses are expressed for a unit mass of fluid at the inflow and out-
flow locations. When multiplied by the mass flow rate m, they yield the rate at which the
corresponding form of the energy (thermal, flow work, kinetic, and potential) enters or
leaves the control volume. The sum of thermal energy and flow work per unit mass may be
replaced by the enthalpy per unit mass, i = u, + pv.

In most open system applications of interest in this text, changes in latent energy
between the inflow and outflow conditions of Equation 1.12d may be neglected, so the
thermal energy reduces to only the sensible component. If the fluid is approximated as an
ideal gas with constant specic heats , the difference in enthalpies (per unit mass) between
the inlet and outlet flows may then be expressed as (i, — ioy) = ¢,(Ti, — Ty, Where ¢, is

out

Reference height

FIGURE 1.8 Conservation of energy for a steady-flow, open system.
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the specific heat at constant pressure and 7;, and 7, are the inlet and outlet temperatures,
respectively. If the fluid is an incompressible liquid, its specific heats at constant pressure and
volume are equal, ¢, = ¢, = ¢, and for Equation 1.12d the change in sensible energy (per unit
mass) reduces to (#,;, — U, o) = (T3, — T, Unless the pressure drop is extremely large, the
difference in flow work terms, (pv);, — (pv)o. 1 negligible for a liquid.

Having already assumed steady-state conditions, no changes in latent energy, and no
thermal or mechanical energy generation, there are at least four cases in which further
assumptions can be made to reduce Equation 1.12d to the simplied steady-ow thermal
energy equation:

q = mcp(Tout - Tm) (1126)

The right-hand side of Equation 1.12e represents the net rate of outflow of enthalpy (thermal
energy plus flow work) for an ideal gas or of thermal energy for an incompressible liquid.

The first two cases for which Equation 1.12e holds can readily be verified by examin-
ing Equation 1.12d. They are:

1. An ideal gas with negligible kinetic and potential energy changes and negligible work
(other than flow work).

2. An incompressible liquid with negligible kinetic and potential energy changes and neg-
ligible work, including flow work. As noted in the preceding discussion, flow work is
negligible for an incompressible liquid provided the pressure variation is not too great.

The second pair of cases cannot be directly derived from Equation 1.12d but require further
knowledge of how mechanical energy is converted into thermal energy. These cases are:

3. Anideal gas with negligible viscous dissipation and negligible pressure variation.
4. An incompressible liquid with negligible viscous dissipation.

Viscous dissipation is the conversion from mechanical energy to thermal energy associated
with viscous forces acting in a fluid. It is important only in cases involving high-speed flow
and/or highly viscous fluid. Since so many engineering applications satisfy one or more of
the preceding four conditions, Equation 1.12e is commonly used for the analysis of heat
transfer in moving fluids. It will be used in Chapter 8 in the study of convection heat trans-
fer in internal flow.

The mass ow rate m of the fluid may be expressed as m = pVA,., where p is the fluid
density and A, is the cross-sectional area of the channel through which the fluid flows. The
volumetric ow rate is simply V = VA, = mip.

ExAMPLE 1.3

The blades of a wind turbine turn a large shaft at a relatively slow speed. The rotational speed
is increased by a gearbox that has an efficiency of 7y, = 0.93. In turn, the gearbox output
shaft drives an electric generator with an efficiency of 7., = 0.95. The cylindrical nacelle,
which houses the gearbox, generator, and associated equipment, is of length L = 6 m and
diameter D = 3 m. If the turbine produces P = 2.5 MW of electrical power, and the air and sur-
roundings temperatures are T, = 25°C and T, = 20°C, respectively, determine the minimum
possible operating temperature inside the nacelle. The emissivity of the nacelle is & = 0.83,
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and the convective heat transfer coefficient is 4 = 35 W/m?- K. The surface of the nacelle
that is adjacent to the blade hub can be considered to be adiabatic, and solar irradiation may

be neglected.
Ty = 20°C J

h = 35 W/m2.K
_— fe——L=6m—>
Air —_— —é—-—--z@@ - D=3m

T. = 25°C , UK
7,=083 7 L~

L | — Generator, Tgen = 0.95

Gearbox, Ngp = 0.93

— Hub Nacelle

SOLUTION

Known: Electrical power produced by a wind turbine. Gearbox and generator efficien-
cies, dimensions and emissivity of the nacelle, ambient and surrounding temperatures, and
heat transfer coefficient.

Find: Minimum possible temperature inside the enclosed nacelle.

Schematic:
Air
T, =25C 9rad
h=35 W/m2~V deony
L=6m /
! ¥
D=3m
TI
¢=0.83
Ngen = 0.95
g = 0.93
Assumptions:

1. Steady-state conditions.
2. Large surroundings.
3. Surface of the nacelle that is adjacent to the hub is adiabatic.
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Analysis:  The nacelle temperature represents the minimum possible temperature inside
the nacelle, and the first law of thermodynamics may be used to determine this tempera-
ture. The first step is to perform an energy balance on the nacelle to determine the rate of
heat transfer from the nacelle to the air and surroundings under steady-state conditions.
This step can be accomplished using either conservation of toral energy or conservation of
thermal and mechanical energy; we will compare these two approaches.

Conservation of Total Energy The first of the three boxed statements of the first law
in Section 1.3 can be converted to a rate basis and expressed in equation form as follows:
dEY

— prtot tot
S gt
n

1
0 (M

Under steady-state conditions, this reduces to Ejy — Exy = 0. The EjY term corresponds to
the mechanical work entering the nacelle W, and the EY, term includes the electrical power
output P and the rate of heat transfer leaving the nacelle ¢g. Thus

W—P—g=0 )

Conservation of Thermal and Mechanical Energy Alternatively, we can express
conservation of thermal and mechanical energy, starting with Equation 1.12c. Under
steady-state conditions, this reduces to

Ein - Eout + Eg = O (3)

Here, E;, once again corresponds to the mechanical work W. However, E,,, now includes
only the rate of heat transfer leaving the nacelle g. It does not include the electrical power,
since E represents only the thermal and mechanical forms of energy. The electrical power
appears in the generation term, because mechanical energy is converted to electrical energy
in the generator, giving rise to a negative source of mechanical energy. That is, £, = —P.
Thus, Equation (3) becomes

W—qg-P=0 4)

which is equivalent to Equation (2), as it must be. Regardless of the manner in which the
first law of thermodynamics is applied, the following expression for the rate of heat transfer
evolves:

g=W-"p &)

The mechanical work and electrical power are related by the efficiencies of the gearbox and
generator,

P= anbngen (6)

Equation (5) can therefore be written as

_ 1 _ 6 1 _ 6
—p —1]=25%10°W X —1]=033%x10°W 7
4 (%mm ) &m3x0% ) @

Application of the Rate Equations Heat transfer is due to convection and radiation from
the exterior surface of the nacelle, governed by Equations 1.3a and 1.7, respectively. Thus
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q = Yrad + eonv™ A[q;,ad + q::,onv]

2
- [ferL + ’Tf] [s0(T} = T4) + h(T, — T.)] = 0.33 X 10°W
or
X 2
|:7T X3mX6m+ 77513m):|

X [0.83 X 5.67 X 107 W/m® - K* (T} — (273 + 20))K*
+ 35 W/m? - K (T, — (273 + 25)K)] = 0.33 X 10°W

The preceding equation does not have a closed-form solution, but the surface temperature
can be easily determined by trial and error or by using a software package such as the Inter-
active Heat Transfer (IHT) software accompanying your text. Doing so yields

T, = 416 K = 143°C

We know that the temperature inside the nacelle must be greater than the exterior surface
temperature of the nacelle T,, because the heat generated within the nacelle must be
transferred from the interior of the nacelle to its surface, and from the surface to the air
and surroundings. Therefore, T, represents the minimum possible temperature inside the
enclosed nacelle. <

Comments:

1. The temperature inside the nacelle is very high. This would preclude, for example, per-
formance of routine maintenance by a worker, as illustrated in the problem statement.
Thermal management approaches involving fans or blowers must be employed to
reduce the temperature to an acceptable level.

2. Improvements in the efficiencies of either the gearbox or the generator would not only
provide more electrical power, but would also reduce the size and cost of the thermal
management hardware. As such, improved efficiencies would increase revenue gener-
ated by the wind turbine and decrease both its capital and operating costs.

3. The heat transfer coefficient would not be a steady value but would vary periodically
as the blades sweep past the nacelle. Therefore, the value of the heat transfer coeffi-
cient represents a time-averaged quantity.

EXAMPLE 1.4

A long conducting rod of diameter D and electrical resistance per unit length R, is initially
in thermal equilibrium with the ambient air and its surroundings. This equilibrium is dis-
turbed when an electrical current / is passed through the rod. Develop an equation that
could be used to compute the variation of the rod temperature with time during the passage
of the current.
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SOLUTION

with time due to passage of an electrical current.

Find: Equation that governs temperature change with time for the rod.

21

Known: Temperature of a rod of prescribed diameter and electrical resistance changes

Schematic:
Air — .
T h e Eout
TSUr
i L
1 o o 1 Diameter
I—>-—- ! E, Eg | D

1 1 v

L " T —

- L -
Assumptions:

1. At any time ¢, the temperature of the rod is uniform.
2. Constant properties (p, ¢, € = ).

3. Radiation exchange between the outer surface of the rod and the surroundings is
between a small surface and a large enclosure.

Analysis: The first law of thermodynamics may often be used to determine an unknown
temperature. In this case, there is no mechanical energy component. So relevant terms
include heat transfer by convection and radiation from the surface, thermal energy genera-
tion due to ohmic heating within the conductor, and a change in thermal energy storage.
Since we wish to determine the rate of change of the temperature, the first law should be
applied at an instant of time. Hence, applying Equation 1.12c to a control volume of length
L about the rod, it follows that

Eg —Ey = Ey
where thermal energy generation is due to the electric resistance heating,
— 72
E, =I"R,L

Heating occurs uniformly within the control volume and could also be expressed in terms of
a volumetric heat generation rate g(W/m?). The generation rate for the entire control volume
is then E, = gV, where ¢ = I ’R! /(wD?/4). Energy outflow is due to convection and net radi-
ation from the surface, Equations 1.3a and 1.7, respectively,

E,.= h(wDL)T — T.,) + eo(wDL)(T* — T%.)

and the change in energy storage is due to the temperature change,

du, 4
E,=—"==(pVcT
st dt dr (pVeT)
The term E; is associated with the rate of change in the internal thermal energy of the rod,
where p and ¢ are the mass density and the specific heat, respectively, of the rod material,
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and V is the volume of the rod, V = (wD*4)L. Substituting the rate equations into the
energy balance, it follows that

2
PR'L — h(wDL)T — T..) — s (wDL)(T* — T*) = pc (774"3) L %
Hence
ar _ I’R — aDIW(T — T.,) — mDsa(T* — Ty,) 4
dt pc(mD* 4)
Comments:

1. The preceding equation could be solved for the time dependence of the rod tempera-
ture by integrating numerically. A steady-state condition would eventually be reached
for which d7/dt = 0. The rod temperature is then determined by an algebraic equation
of the form

aDW(T — T,,) + mDeo(T* — T ) = I*R)

2. For fixed environmental conditions (h, T, Ty,), as well as a rod of fixed geometry (D)
and properties (g, R,), the steady-state temperature depends on the rate of thermal
energy generation and hence on the value of the electric current. Consider an uninsu-
lated copper wire (D = 1 mm, & = 0.8, R, = 0.4 {}/m) in a relatively large enclosure
(T, = 300 K) through which cooling air is circulated (h = 100 W/m?*- K, T., = 300 K).
Substituting these values into the foregoing equation, the rod temperature has been
computed for operating currents in the range 0 = 7 = 10 A, and the following results
were obtained:

150

125

100

T(°C)

75

60 [ B
50

25

0 2 4 52 6 8 10
I (amperes)

3. If a maximum operating temperature of 7 = 60°C is prescribed for safety reasons,
the current should not exceed 5.2 A. At this temperature, heat transfer by radiation
(0.6 W/m) is much less than heat transfer by convection (10.4 W/m). Hence, if one
wished to operate at a larger current while maintaining the rod temperature within
the safety limit, the convection coefficient would have to be increased by increasing the
velocity of the circulating air. For 7 = 250 W/m? - K, the maximum allowable current
could be increased to 8.1 A.

4. The IHT software is especially useful for solving equations, such as the energy balance
in Comment 1, and generating the graphical results of Comment 2.
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Iy | ExamMPLE 1.5

A hydrogen-air Proton Exchange Membrane (PEM) fuel cell is illustrated below. It consists
of an electrolytic membrane sandwiched between porous cathode and anode materials, form-
ing a very thin, three-layer membrane electrode assembly (MEA). At the anode, protons and
electrons are generated (2H, — 4H" + 4¢7); at the cathode, the protons and electrons recom-
bine to form water (O, + 4e~ + 4H" — 2H,0). The overall reaction is then 2H, + O, —
2H,0. The dual role of the electrolytic membrane is to transfer hydrogen ions and serve as
a barrier to electron transfer, forcing the electrons to the electrical load that is external to
the fuel cell.

— e

e e
TSLIV
Hy——> Hz}— i— 0, —0,
+
g H H,0
8 T,
H, |e™ e | O,
«—0 WA ——
H+ l
H,0
H, (e~ e | O
C‘T 2 Tsur
we | |
H,0 —
—— > H,0+0,
Porous anode Porous cathode

L— Electrolytic membrane
T | T
Air
h, T,

The membrane must operate in a moist state in order to conduct ions. However, the pres-
ence of liquid water in the cathode material may block the oxygen from reaching the cathode
reaction sites, resulting in the failure of the fuel cell. Therefore, it is critical to control the tem-
perature of the fuel cell, 7., so that the cathode side contains saturated water vapor.

For a given set of H, and air inlet flow rates and use of a 50 mm X 50 mm MEA, the
fuel cell generates P = [+ E, = 9 W of electrical power. Saturated vapor conditions exist in
the fuel cell, corresponding to T, = T,,, = 56.4°C. The overall electrochemical reaction is
exothermic, and the corresponding thermal generation rate of E, = 11.25 W must be
removed from the fuel cell by convection and radiation. The ambient and surrounding
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temperatures are T,, = T, = 25°C, and the relationship between the cooling air velocity
and the convection heat transfer coefficient % is

h=10.9 W+ s"¥/m**- K X V°*

where V has units of m/s. The exterior surface of the fuel cell has an emissivity of &€ = (.88.
Determine the value of the cooling air velocity needed to maintain steady-state operating
conditions. Assume the edges of the fuel cell are well insulated.

SOLUTION

I

Known: Ambient and surrounding temperatures, fuel cell output voltage and electrical
current, heat generated by the overall electrochemical reaction, and the desired fuel cell
operating temperature.

Find: The required cooling air velocity V needed to maintain steady-state operation at
T.~ 56.4°C.

Schematic:
=Y
i
I
I
I
I
I
I
i i
1 : I
: H : =50 mm
1
N (A
1 ! I
1 : I
S 1| Top=25C
& ! I
1 : I
1 1 I,L
1 H 14
1 I 4
1
1 ‘d
1 e )
1 i “ T.=56.4°C
[ ,T’ T T £=0.88
T, = 25°C
Air h
Assumptions:

1. Steady-state conditions.
2. Negligible temperature variations within the fuel cell.
3. Fuel cell is placed in large surroundings.

4. Edges of the fuel cell are well insulated.

5. Negligible energy entering or leaving the control volume due to gas or liquid flows.
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Analysis: To determine the required cooling air velocity, we must first perform an
energy balance on the fuel cell. Noting that there is no mechanical energy component, we
see that E;, = 0 and E,,, = E,. This yields

Geom + Graa = E, = 1125 W
where
g = AT(T, = T3,
= 0.88 X (2 X 0.05m X 0.05 m) X 5.67 X 108 W/m?-K* X (329.4* — 298*) K*
=097 W

Therefore, we may find
Geonry = 11.25 W — 0.97 W = 10.28 W
=hA(T,— T,)
=109 W-s**/m**- K X VO¥ A(T, — T..)

which may be rearranged to yield

Ve [ 10.28 W ]‘ &
10.9 W+ s"/m?* - K X (2 X 0.05m X 0.05 m) X (56.4 — 25°C)

V=94m/s <

Comments:
1. Temperature and humidity of the MEA will vary from location to location within the
fuel cell. Prediction of the local conditions within the fuel cell would require a more
detailed analysis.

2. The required cooling air velocity is quite high. Decreased cooling velocities could be
used if heat transfer enhancement devices were added to the exterior of the fuel cell.

3. The convective heat rate is significantly greater than the radiation heat rate.

4. The chemical energy (20.25 W) of the hydrogen and oxygen is converted to electrical
(9 W) and thermal (11.25 W) energy. This fuel cell operates at a conversion efficiency
of (9 W)/(20.25 W) X 100 = 44%.

_

ExXAMPLE 1.6

Large PEM fuel cells, such as those used in automotive applications, often require internal
cooling using pure liquid water to maintain their temperature at a desired level (see
Example 1.5). In cold climates, the cooling water must be drained from the fuel cell to an
adjoining container when the automobile is turned off so that harmful freezing does not
occur within the fuel cell. Consider a mass M of ice that was frozen while the automobile
was not being operated. The ice is at the fusion temperature (7; = 0°C) and is enclosed in a
cubical container of width W on a side. The container wall is of thickness L and thermal
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conductivity k. If the outer surface of the wall is heated to a temperature T, > T} to melt the
ice, obtain an expression for the time needed to melt the entire mass of ice and, in turn,
deliver cooling water to, and energize, the fuel cell.

SOLUTION
|

Known: Mass and temperature of ice. Dimensions, thermal conductivity, and outer sur-
face temperature of containing wall.

Find: Expression for time needed to melt the ice.

Schematic:
Section A-A —k
+
i }\ R 1l
H -
E, 1 1 !
1 AEst 1
(7 L
o 1 1
1 i _I
Ice-water T
« W mixture (Tf) L
Assumptions:

1. Inner surface of wall is at 7} throughout the process.
2. Constant properties.
3. Steady-state, one-dimensional conduction through each wall.
4. Conduction area of one wall may be approximated as W? (L < W).
Analysis:  Since we must determine the melting time ¢,,, the first law should be applied

over the time interval Ar = ¢, Hence, applying Equation 1.12b to a control volume about
the ice—water mixture, it follows that

Ein = AE‘st = Al]lat

where the increase in energy stored within the control volume is due exclusively to the

change in latent energy associated with conversion from the solid to liquid state. Heat is

transferred to the ice by means of conduction through the container wall. Since the temper-

ature difference across the wall is assumed to remain at (7, — T)) throughout the melting
process, the wall conduction rate is constant

T, —T;

Gcond — k(6W2) T

and the amount of energy inflow is
T] - Tf
Ein = k(6W2) T tm

The amount of energy required to effect such a phase change per unit mass of solid is
termed the latent heat of fusion hy. Hence the increase in energy storage is

AE, = Mhy
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By substituting into the first law expression, it follows that

MhL
6WK(T, — T)

I

Comments:

1. Several complications would arise if the ice were initially subcooled. The storage term
would have to include the change in sensible (internal thermal) energy required to take
the ice from the subcooled to the fusion temperature. During this process, temperature
gradients would develop in the ice.

2. Consider a cavity of width W = 100 mm on a side, wall thickness L. = 5 mm, and ther-
mal conductivity k = 0.05 W/m - K. The mass of the ice in the cavity is

M = p(W — 2L)* = 920 kg/m’ X (0.100 — 0.01)°m® = 0.67 kg

If the outer surface temperature is 7, = 30°C, the time required to melt the ice is

0.67 kg X 334,000 J/kg X 0.005 m

= = 12,430 s =207 min
6(0.100 m)* X 0.05 W/m + K (30 — 0)°C

m

The density and latent heat of fusion of the ice are p, = 920 kg/m’ and h, = 334 kJ/kg,
respectively.

3. Note that the units of K and °C cancel each other in the foregoing expression for ¢,
Such cancellation occurs frequently in heat transfer analysis and is due to both units
appearing in the context of a temperature difference.

_

The Surface Energy Balance We will frequently have occasion to apply the conserva-
tion of energy requirement at the surface of a medium. In this special case, the control sur-
faces are located on either side of the physical boundary and enclose no mass or volume
(see Figure 1.9). Accordingly, the generation and storage terms of the conservation

Surroundings
T.

sur

Fluid

q ’c’onv l l
U, T,

I I FIGURE 1.9 The energy balance for conservation
Control surfaces of energy at the surface of a medium.

~
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expression, Equation 1.12c, are no longer relevant, and it is necessary to deal only with
surface phenomena. For this case, the conservation requirement becomes

E.

in ~ Eou =0 (1.13)
Even though energy generation may be occurring in the medium, the process would not
affect the energy balance at the control surface. Moreover, this conservation requirement
holds for both steady-state and transient conditions.

In Figure 1.9, three heat transfer terms are shown for the control surface. On a unit area
basis, they are conduction from the medium fo the control surface (g.,q), convection from
the surface to a fluid (gg,,,), and net radiation exchange from the surface to the surround-

"

ings (gr,q)- The energy balance then takes the form.
qgond - qgonv - q:',ad =0 (114)

and we can express each of the terms using the appropriate rate equations, Equations 1.2,
1.3a,and 1.7.

'y | ExamPLE 1.7

Humans are able to control their heat production rate and heat loss rate to maintain a nearly
constant core temperature of 7, = 37°C under a wide range of environmental conditions.
This process is called thermoregulation. From the perspective of calculating heat transfer
between a human body and its surroundings, we focus on a layer of skin and fat, with its
outer surface exposed to the environment and its inner surface at a temperature slightly less
than the core temperature, 7; = 35°C = 308 K. Consider a person with a skin/fat layer of
thickness L =3 mm and effective thermal conductivity £ = 0.3 W/m-K. The person
has a surface area A = 1.8 m” and is dressed in a bathing suit. The emissivity of the skin is
e =0.95.

1. When the person is in still air at 7,, = 297 K, what is the skin surface temperature and
rate of heat loss to the environment? Convection heat transfer to the air is characterized
by a free convection coefficient of 4 = 2 W/m?* - K.

2. When the person is in water at T, = 297 K, what is the skin surface temperature and
heat loss rate? Heat transfer to the water is characterized by a convection coefficient of
h =200 W/m*- K.

SOLUTION
|

Known: Inner surface temperature of a skin/fat layer of known thickness, thermal con-
ductivity, emissivity, and surface area. Ambient conditions.

Find: Skin surface temperature and heat loss rate for the person in air and the person in
water.
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Schematic:
Ti=308 K guinfat
T, =297 K —
qgond_>|
I
I
I
k=03 WmkK —f— I T. =297 K
' h =2 Wim?K (Air)
l«— L =3 mm—> h =200 W/m?K (Water)
Air or water
Assumptions:

1. Steady-state conditions.
2. One-dimensional heat transfer by conduction through the skin/fat layer.
3. Thermal conductivity is uniform.

4. Radiation exchange between the skin surface and the surroundings is between a small
surface and a large enclosure at the air temperature.

5. Liquid water is opaque to thermal radiation.

6. Bathing suit has no effect on heat loss from body.
7. Solar radiation is negligible.

8. Body is completely immersed in water in part 2.

Analysis:

1. The skin surface temperature may be obtained by performing an energy balance at the
skin surface. From Equation 1.13,

Ein - Eoul =0
It follows that, on a unit area basis,
qgond - q,clonv - qgad =0
or, rearranging and substituting from Equations 1.2, 1.3a, and 1.7,
I,— 1T,

k—jffZMﬂ—TQ+£UUf—ﬂb

The only unknown is T, but we cannot solve for it explicitly because of the fourth-power
dependence of the radiation term. Therefore, we must solve the equation iteratively,
which can be done by hand or by using IHT or some other equation solver. To expedite
a hand solution, we write the radiation heat flux in terms of the radiation heat transfer
coefficient, using Equations 1.8 and 1.9:

T,— T,
k L‘zmn—na+mn—ﬂw

Solving for T, with T, = T.,, we have

kT,
+ (h+ h)T.
poL T
STk
Xt h+h
I ( ’)
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We estimate &, using Equation 1.9 with a guessed value of 7, = 305 K and T\, = 297 K,
to yield 4, = 5.9 W/m?-K. Then, substituting numerical values into the preceding
equation, we find

03 W/m-K X 308K | 5 | 59)w/m? K x 297 K

-3
1= —3X 0 =307.2K
=2 WIMTR 4 (2 4+5.9) Wm? - K
3X10°m

With this new value of T,, we can recalculate 4, and T, which are unchanged. Thus the
skin temperature is 307.2 K = 34°C. <

The rate of heat loss can be found by evaluating the conduction through the
skin/fat layer:

T,—T, % (308 —307.2) K

g, =kA———==03W/m-K X 1.8m? — =146 W <
L 3X10°m

2. Since liquid water is opaque to thermal radiation, heat loss from the skin surface is by
convection only. Using the previous expression with 4, = 0, we find

O.3W/m-K><308K+200W/m2.K><297K

-3
T, = 3X5%W“/1 — =300.7K <
22 WML 4 200 W/m? - K
3X10°m
and
T.— T — K
qs=kA¥=0.3W/m'K><1.8mzxw=1320w <
L 3X107°m
Comments:

1. When using energy balances involving radiation exchange, the temperatures appearing
in the radiation terms must be expressed in kelvins, and it is good practice to use
kelvins in all terms to avoid confusion.

2. In part 1, heat losses due to convection and radiation are 37 W and 109 W, respec-
tively. Thus, it would not have been reasonable to neglect radiation. Care must be
taken to include radiation when the heat transfer coefficient is small (as it often is for
natural convection to a gas), even if the problem statement does not give any indication
of its importance.

3. A typical rate of metabolic heat generation is 100 W. If the person stayed in the water
too long, the core body temperature would begin to fall. The large heat loss in water is
due to the higher heat transfer coefficient, which in turn is due to the much larger ther-
mal conductivity of water compared to air.

4. The skin temperature of 34°C in part 1 is comfortable, but the skin temperature of
28°C in part 2 is uncomfortably cold.
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Application of the Conservation Laws: Methodology In addition to being familiar with
the transport rate equations described in Section 1.2, the heat transfer analyst must be able
to work with the energy conservation requirements of Equations 1.12 and 1.13. The appli-
cation of these balances is simplified if a few basic rules are followed.

1. The appropriate control volume must be defined, with the control surfaces represented
by a dashed line or lines.

2. The appropriate time basis must be identified.

3. The relevant energy processes must be identified, and each process should be shown on
the control volume by an appropriately labeled arrow.

4. The conservation equation must then be written, and appropriate rate expressions must
be substituted for the relevant terms in the equation.

Note that the energy conservation requirement may be applied to a nife control volume or
a differential (infinitesimal) control volume. In the first case, the resulting expression
governs overall system behavior. In the second case, a differential equation is obtained that
can be solved for conditions at each point in the system. Differential control volumes are
introduced in Chapter 2, and both types of control volumes are used extensively throughout
the text.

1.3.2 Relationship to the Second Law of Thermodynamics
and the Efficiency of Heat Engines

In this section, we are interested in the efficiency of heat engines. The discussion builds on
your knowledge of thermodynamics and shows how heat transfer plays a crucial role in
managing and promoting the efficiency of a broad range of energy conversion devices.
Recall that a heat engine is any device that operates continuously or cyclically and that con-
verts heat to work. Examples include internal combustion engines, power plants, and ther-
moelectric devices (to be discussed in Section 3.8). Improving the efficiency of heat engines
is a subject of extreme importance; for example, more efficient combustion engines con-
sume less fuel to produce a given amount of work and reduce the corresponding emissions
of pollutants and carbon dioxide. More efficient thermoelectric devices can generate more
electricity from waste heat. Regardless of the energy conversion device, its size, weight, and
cost can all be reduced through improvements in its energy conversion efficiency.

The second law of thermodynamics is often invoked when efficiency is of concern and
can be expressed in a variety of different but equivalent ways. The KelvinPlanck state-
ment is particularly relevant to the operation of heat engines [1]. It states:

It is impossible for any system to operate in a thermodynamic cycle and deliver a net amount of
work to its surroundings while receiving energy by heat transfer from a single thermal reservoir.

Recall that a thermodynamic cycle is a process for which the initial and final states of the
system are identical. Consequently, the energy stored in the system does not change
between the initial and final states, and the first law of thermodynamics (Equation 1.12a)
reduces to W = Q.

A consequence of the Kelvin—Planck statement is that a heat engine must exchange
heat with two (or more) reservoirs, gaining thermal energy from the higher-temperature
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reservoir and rejecting thermal energy to the lower-temperature reservoir. Thus, converting all
of the input heat to work is impossible, and W = Q;, — Q,,, where Q;, and Q,,, are both defined
to be positive. That is, O, is the heat transferred from the high temperature source to the heat
engine, and Q,,, is the heat transferred from the heat engine to the low temperature sink.

The efficiency of a heat engine is defined as the fraction of heat transferred into the
system that is converted to work, namely

_ w Qin - Qoul Qout

7’ = — = — = 1 e —

Qin Qin Qin

The second law also tells us that, for a reversible process, the ratio Q,,/Q;, is equal to the

ratio of the absolute temperatures of the respective reservoirs [1]. Thus, the efficiency of a
heat engine undergoing a reversible process, called the Carnot efciency m, is given by

(1.15)

ne=1-== (1.16)

where T, and T, are the absolute temperatures of the low- and high-temperature reservoirs,
respectively. The Carnot efficiency is the maximum possible efficiency that any heat
engine can achieve operating between those two temperatures. Any real heat engine, which
will necessarily undergo an irreversible process, will have a lower efficiency.

From our knowledge of thermodynamics, we know that, for heat transfer to take place
reversibly, it must occur through an infinitesimal temperature difference between the reser-
voir and heat engine. However, from our newly acquired knowledge of heat transfer mech-
anisms, as embodied, for example, in Equations 1.2, 1.3, and 1.7, we now realize that, for
heat transfer to occur, there must be a nonzero temperature difference between the reservoir
and the heat engine. This reality introduces irreversibility and reduces the efficiency.

With the concepts of the preceding paragraph in mind, we now consider a more realistic
model of a heat engine [2-5] in which heat is transferred into the engine through a thermal
resistance R, ;,, while heat is extracted from the engine through a second thermal resistance R, .
(Figure 1.10). The subscripts / and c refer to the hot and cold sides of the heat engine, respec-
tively. As discussed in Section 1.2.4, these thermal resistances are associated with heat trans-
fer between the heat engine and the reservoirs across a nonzero temperature difference, by way
of the mechanisms of conduction, convection, and/or radiation. For example, the resistances
could represent conduction through the walls separating the heat engine from the two reser-
voirs. Note that the reservoir temperatures are still 7;, and 7, but that the temperatures seen by
the heat engine are 7, < T} and 7,.; > T,, as shown in the diagram. The heat engine is still
assumed to be infernally reversible, and its efficiency is still the Carnot efficiency. However,

High-temperature
resenvoir | o r* T,
High-temperature - [0
side resistance
L* Ty
. Internally
Heat engine reversible —w
walls heat engine
e T
Low-temperature = |
side resistance VO || FIGURE 1.10 Internally reversible heat engine
Low-temperature ¢ exchanging heat with high- and low-temperature
LESEIVON reservoirs through thermal resistances.
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the Carnot efficiency is now based on the internal temperatures T),; and T,,. Therefore, a modi-
fied efficiency that accounts for realistic (irreversible) heat transfer processes 7, is

T,

c,i

_Qoutzl_QOutzl_

7 - . (1.17)
in m h,i

M = 1

where the ratio of heat ows over a time interval, Q,,/Q;,, has been replaced by the corre-
sponding ratio of heat rates, q,,/q;,- This replacement is based on applying energy conserva-
tion at an instant in time,' as discussed in Section 1.3.1. Utilizing the definition of a thermal
resistance, the heat transfer rates into and out of the heat engine are given by

Gin = (T}, = Ty )Ry, (1.18a)
Gou = (T.; = TIR,, (1.18b)
Equations 1.18 can be solved for the internal temperatures, to yield
Tyi =Ty = quRis (1.19a)
Toi =T+ qouRic = Te + qin(1 = MR, (1.19b)

In Equation 1.19b, ¢, has been related to g;, and 7,,, using Equation 1.17. The more realis-
tic, modified efficiency can then be expressed as

Tc,i _ l Tc + qm(l - nm)Rt,c

N,=1-— = (1.20)
T, T, — qinRi
Solving for 7, results in
T,
Np=1— ——— (1.21)
Th _ qinRtot

where R = R, + R, .. Itis readily evident that n),, = 1. only if the thermal resistances R, ,
and R, . could somehow be made infinitesimally small (or if g;, = 0). For realistic (nonzero)
values of R, 1,, < 7m¢, and m,, further deteriorates as either R, or g, increases. As an
extreme case, note that n,, = 0 when T, = T, + ¢;,R,,;, meaning that no power could be
produced even though the Carnot efficiency, as expressed in Equation 1.16, is nonzero.

In addition to the efficiency, another important parameter to consider is the power out-
put of the heat engine, given by

T,

E ] (1.22)

W= g, = qm[l e
Th - qinRtot

It has already been noted in our discussion of Equation 1.21 that the efficiency is equal to
the maximum Carnot efficiency (7,, = 1) if ¢;, = 0. However, under these circumstances

'The heat engine is assumed to undergo a continuous, steady-flow process, so that all heat and work processes
are occurring simultaneously, and the corresponding terms would be expressed in watts (W). For a heat engine
undergoing a cyclic process with sequential heat and work processes occurring over different time intervals, we
would need to introduce the time intervals for each process, and each term would be expressed in joules (J).
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the power output Wis zero according to Equation 1.22. To increase W, g;, must be
increased at the expense of decreased efficiency. In any real application, a balance must
be struck between maximizing the efficiency and maximizing the power output. If provision
of the heat input is inexpensive (for example, if waste heat is converted to power), a case
could be made for sacrificing efficiency to maximize power output. In contrast, if fuel is
expensive or emissions are detrimental (such as for a conventional fossil fuel power plant),
the efficiency of the energy conversion may be as or more important than the power output.
In any case, heat transfer and thermodyamic principles should be used to determine the
actual efficiency and power output of a heat engine.

Although we have limited our discussion of the second law to heat engines, the preceding
analysis shows how the principles of thermodynamics and heat transfer can be combined to
address significant problems of contemporary interest.

ExAmPLE 1.8

In a large steam power plant, the combustion of coal provides a heat rate of ¢;, = 2500 MW
at a flame temperature of 7, = 1000 K. Heat is rejected from the plant to a river flowing
at 7. = 300 K. Heat is transferred from the combustion products to the exterior of large
tubes in the boiler by way of radiation and convection, through the boiler tubes by conduc-
tion, and then from the interior tube surface to the working fluid (water) by convection.
On the cold side, heat is extracted from the power plant by condensation of steam on the
exterior condenser tube surfaces, through the condenser tube walls by conduction, and from
the interior of the condenser tubes to the river water by convection. Hot and cold side ther-
mal resistances account for the combined effects of conduction, convection, and radiation
and, under design conditions, they are R,, = 8 X 107 K/W and R,, =2 X 10" ¥ K/W,
respectively.

1. Determine the efficiency and power output of the power plant, accounting for heat
transfer effects to and from the cold and hot reservoirs. Treat the power plant as an
internally reversible heat engine.

2. Over time, coal slag will accumulate on the combustion side of the boiler tubes. This
fouling process increases the hot side resistance to R, = 9 X 10~® K/W. Concurrently,
biological matter can accumulate on the river water side of the condenser tubes,
increasing the cold side resistance to R,, = 2.2 X 107® K/W. Find the efficiency and
power output of the plant under fouled conditions.

SOLUTION
|

Known: Source and sink temperatures and heat input rate for an internally reversible
heat engine. Thermal resistances separating heat engine from source and sink under clean
and fouled conditions.

Find:
1. Efficiency and power output for clean conditions.

2. Efficiency and power output under fouled conditions.



1.3 = Relationship to Thermodynamics 35

Schematic:
Products of combustion
4, = 2500,MW B 7, = 1000 K
R, =8x10 KW (clean) |
R, =9 x 10 % KW (fouled) 5
— Thi
Power plant  —f—> W
| T(‘,l
R.=2x10 °KW (clean) | I [ ]
R, = 2.2 x 10" KW (fouled) 7
r, T
Cooling water ¢
Assumptions:

1. Steady-state conditions.

2. Power plant behaves as an internally reversible heat engine, so its efficiency is the
modified efficiency.

Analysis:

1. The modified efficiency of the internally reversible power plant, considering realistic heat
transfer effects on the hot and cold side of the power plant, is given by Equation 1.21:

T,

c

My =1—
T, — qinRiot

where, for clean conditions
Ry=R,+R,.=8X 1078 K/W +2X 108 K/W=1.0 X 1077 K/W
Thus

T
=1 =1 300K — 0.60 = 60% <

T, — guRo. 1000 K — 2500 X 106 W X 1.0 X 10~ K/W

The power output is given by

W = g,m,, = 2500 MW X 0.60 = 1500 MW <

2. Under fouled conditions, the preceding calculations are repeated to find

N, = 0.583 = 58.3% and W = 1460 MW <

Comments:

1. The actual efficiency and power output of a power plant operating between these
temperatures would be much less than the foregoing values, since there would
be other irreversibilities internal to the power plant. Even if these irreversibilities
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were considered in a more comprehensive analysis, fouling effects would still reduce
the plant efficiency and power output.

2. The Carnot efficiency is no. =1 — T./T, = 1 — 300 K/1000 K = 70%. The correspond-
ing power output would be W = g;,n- = 2500 MW X 0.70 = 1750 MW. Thus, if the
effect of irreversible heat transfer from and to the hot and cold reservoirs, respectively,
were neglected, the power output of the plant would be significantly overpredicted.

3. Fouling reduces the power output of the plant by AP = 40 MW. If the plant owner
sells the electricity at a price of $0.08/kW - h, the daily lost revenue associated with
operating the fouled plant would be C = 40,000 kW X $0.08/kW -h X 24 h/day =
$76,800/day.

?

1.4 Units and Dimensions

The physical quantities of heat transfer are specified in terms of dimensions, which are
measured in terms of units. Four basic dimensions are required for the development of heat
transfer: length (L), mass (M), time (7), and temperature (7). All other physical quantities of
interest may be related to these four basic dimensions.

In the United States, dimensions have been customarily measured in terms of the
English system of units, for which the base units are:

Dimension Unit

Length (L) — foot (ft)

Mass (M) — pound mass (1b,,)
Time () — second (s)
Temperature (7' — degree Fahrenheit (°F)

The units required to specify other physical quantities may then be inferred from this group.

In recent years, there has been a strong trend toward the global usage of a standard set
of units. In 1960, the SI (Systme International dUnits) system of units was dened by
the Eleventh General Conference on Weights and Measures and recommended as a world-
wide standard. In response to this trend, the American Society of Mechanical Engineers
(ASME) has required the use of SI units in all of its publications since 1974. For this reason
and because SI units are operationally more convenient than the English system, the SI sys-
tem is used for calculations of this text. However, because for some time to come, engineers
might also have to work with results expressed in the English system, you should be able to
convert from one system to the other. For your convenience, conversion factors are provided
on the inside back cover of the text.

The SI base units required for this text are summarized in Table 1.2. With regard to
these units, note that 1 mol is the amount of substance that has as many atoms or mole-
cules as there are atoms in 12 g of carbon-12 ('2C); this is the gram-mole (mol). Although
the mole has been recommended as the unit quantity of matter for the SI system, it is more
consistent to work with the kilogram-mol (kmol, kg-mol). One kmol is simply the amount
of substance that has as many atoms or molecules as there are atoms in 12 kg of '*C.
As long as the use is consistent within a given problem, no difficulties arise in using either
mol or kmol. The molecular weight of a substance is the mass associated with a mole or
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kilogram-mole. For oxygen, as an example, the molecular weight Jl is 16 g/mol or
16 kg/kmol.

Although the SI unit of temperature is the kelvin, use of the Celsius temperature scale
remains widespread. Zero on the Celsius scale (0°C) is equivalent to 273.15 K on the ther-
modynamic scale,” in which case

T(K) = T (°C) + 273.15

However, temperature differences are equivalent for the two scales and may be denoted as
°C or K. Also, although the SI unit of time is the second, other units of time (minute, hour,
and day) are so common that their use with the SI system is generally accepted.

The SI units comprise a coherent form of the metric system. That is, all remaining units
may be derived from the base units using formulas that do not involve any numerical factors.
Derived units for selected quantities are listed in Table 1.3. Note that force is measured in
newtons, where a 1-N force will accelerate a 1-kg mass at 1 m/s>. Hence 1 N = 1 kg - m/s*.
The unit of pressure (N/m?) is often referred to as the pascal. In the SI system, there is
one unit of energy (thermal, mechanical, or electrical) called the joule (J); 1J = 1 N-m. The
unit for energy rate, or power, is then J/s, where one joule per second is equivalent to
one watt (1 J/s = 1 W). Since working with extremely large or small numbers is frequently
necessary, a set of standard prefixes has been introduced to simplify matters (Table 1.4). For
example, 1 megawatt (MW) = 10° W, and 1 micrometer (um) = 10~° m.

TaBLE 1.2 SI base and supplementary units

Quantity and Symbol Unit and Symbol
Length (L) meter (m)
Mass (M) kilogram (kg)
Amount of substance mole (mol)
Time (¢) second (s)
Electric current (1) ampere (A)
Thermodynamic temperature (7) kelvin (K)
Plane angle (0) radian (rad)
Solid angle’ (w) steradian (sr)

“Supplementary unit.

TaBLE 1.3 Sl derived units for selected quantities

Name Expression
Quantity and Symbol Formula in SI Base Units
Force newton (N) m - kg/s’ m - kg/s’
Pressure and stress pascal (Pa) N/m? kg/m - s
Energy joule (I) N-m m? - kg/s’
Power watt (W) /s m? - kg/s’

The degree symbol is retained for designating the Celsius temperature (°C) to avoid confusion with the use of C
for the unit of electrical charge (coulomb).
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TaABLE 1.4 Multiplying prefixes

Prex Abbreviation Multiplier
femto f 10"
pico p 10712
nano n 107°
micro n 10°°
milli m 1073
centi c 1072
hecto h 10?
kilo k 10°
mega M 10°
giga G 10°
tera T 10"
peta P 10"
exa E 10"

1.5 Analysis of Heat Transfer Problems:

Methodology

A major objective of this text is to prepare you to solve engineering problems that involve
heat transfer processes. To this end, numerous problems are provided at the end of each
chapter. In working these problems you will gain a deeper appreciation for the fundamen-
tals of the subject, and you will gain confidence in your ability to apply these fundamentals
to the solution of engineering problems.

In solving problems, we advocate the use of a systematic procedure characterized by a

prescribed format. We consistently employ this procedure in our examples, and we require
our students to use it in their problem solutions. It consists of the following steps:

1.

Known: After carefully reading the problem, state briefly and concisely what is known
about the problem. Do not repeat the problem statement.

Find: State briefly and concisely what must be found.

. Schematic: Draw a schematic of the physical system. If application of the conservation

laws is anticipated, represent the required control surface or surfaces by dashed lines
on the schematic. Identify relevant heat transfer processes by appropriately labeled
arrows on the schematic.

Assumptions: List all pertinent simplifying assumptions.

. Properties: Compile property values needed for subsequent calculations and identify

the source from which they are obtained.

. Analysis: Begin your analysis by applying appropriate conservation laws, and introduce

rate equations as needed. Develop the analysis as completely as possible before substitut-
ing numerical values. Perform the calculations needed to obtain the desired results.

. Comments: Discuss your results. Such a discussion may include a summary of key

conclusions, a critique of the original assumptions, and an inference of trends obtained
by performing additional what-if and parameter sensitivity calculations.
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The importance of following steps 1 through 4 should not be underestimated. They provide
a useful guide to thinking about a problem before effecting its solution. In step 7, we hope
you will take the initiative to gain additional insights by performing calculations that may
be computer based. The software accompanying this text provides a suitable tool for effect-
ing such calculations.

Y | ExAMPLE 1.9

The coating on a plate is cured by exposure to an infrared lamp providing a uniform irradia-
tion of 2000 W/m?. It absorbs 80% of the irradiation and has an emissivity of 0.50. It is also
exposed to an airflow and large surroundings for which temperatures are 20°C and 30°C,
respectively.

1. If the convection coefficient between the plate and the ambient air is 15 W/m?-K, what
is the cure temperature of the plate?

2. The final characteristics of the coating, including wear and durability, are known to
depend on the temperature at which curing occurs. An airflow system is able to control
the air velocity, and hence the convection coefficient, on the cured surface, but the
process engineer needs to know how the temperature depends on the convection coeffi-
cient. Provide the desired information by computing and plotting the surface tempera-
ture as a function of & for 2 =< h = 200 W/m?- K. What value of & would provide a
cure temperature of 50°C?

SOLUTION
|

Known: Coating with prescribed radiation properties is cured by irradiation from an
infrared lamp. Heat transfer from the coating is by convection to ambient air and radiation
exchange with the surroundings.

Find:
1. Cure temperature for 7 = 15 W/m?*- K.

2. Effect of airflow on the cure temperature for 2 = 4 = 200 W/m?+ K. Value of /4 for
which the cure temperature is 50°C.

Schematic:

T,, = 30°C

Gamp = 2000 W/m? 9 cony Graa @ Gamp
T, = 20°C
2<h<200W/mPK F 0 » vLl___JY___

i —
Air - — I

T Coating,
7 | (}=O.8, e=0.5
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Assumptions:
1. Steady-state conditions.
2. Negligible heat loss from back surface of plate.

3. Plate is small object in large surroundings, and coating has an absorptivity of
g, = € = 0.5 with respect to irradiation from the surroundings.

Analysis:

1. Since the process corresponds to steady-state conditions and there is no heat transfer at
the back surface, the plate must be isothermal (7, = T'). Hence the desired temperature
may be determined by placing a control surface about the exposed surface and apply-
ing Equation 1.13 or by placing the control surface about the entire plate and applying
Equation 1.12c. Adopting the latter approach and recognizing that there is no energy
generation (E, = 0), Equation 1.12¢ reduces to

Ei _Eout =0

where E, = 0 for steady-state conditions. With energy inflow due to absorption of the
lamp irradiation by the coating and outflow due to convection and net radiation transfer
to the surroundings, it follows that

(@G )iamp ~ Geony ~ Graa = 0
Substituting from Equations 1.3a and 1.7, we obtain
@Gy = WT = T.) — eo(T* — Ty) =0
Substituting numerical values
0.8 X 2000 W/m? — 15 W/m? - K (T — 293) K
—0.5X5.67X10°*Wm?-K*(T*—-303)K*=0
and solving by trial-and-error, we obtain
T=377K=104°C <

2. Solving the foregoing energy balance for selected values of 4 in the prescribed range
and plotting the results, we obtain

240

200

0 20 40 51 60 80 100
I (W/m?K)

If a cure temperature of 50°C is desired, the airflow must provide a convection
coefficient of

(T = 50°C) = 51.0 W/m* - K <
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Comments:

1. The coating (plate) temperature may be reduced by decreasing T, and T, as well as by
increasing the air velocity and hence the convection coefficient.

2. The relative contributions of convection and radiation to heat transfer from the plate
vary greatly with h. For h=2W/m?*-K, T =204°C and radiation dominates
(qhq = 1232 W/m?, gL, = 368 W/m?). Conversely, for h = 200 W/m?- K, T = 28°C
and convection dominates (¢g/,, =~ 1606 W/m?, g,y =~ —6 W/m?). In fact, for this con-
dition the plate temperature is slightly less than that of the surroundings and net radia-
tion exchange is 7o the plate.

F

1.6 Relevance of Heat Transfer

We will devote much time to acquiring an understanding of heat transfer effects and to
developing the skills needed to predict heat transfer rates and temperatures that evolve in
certain situations. What is the value of this knowledge? To what problems may it be
applied? A few examples will serve to illustrate the rich breadth of applications in which
heat transfer plays a critical role.

The challenge of providing sufficient amounts of energy for humankind is well known.
Adequate supplies of energy are needed not only to fuel industrial productivity, but also to
supply safe drinking water and food for much of the world’s population and to provide the
sanitation necessary to control life-threatening diseases.

To appreciate the role heat transfer plays in the energy challenge, consider a flow chart
that represents energy use in the United States, as shown in Figure 1.11a. Currently, about
58% of the nearly 110 EJ of energy that is consumed annually in the United States is
wasted in the form of heat. Nearly 70% of the energy used to generate electricity is lost in
the form of heat. The transportation sector, which relies almost exclusively on petroleum-
based fuels, utilizes only 21.5% of the energy it consumes; the remaining 78.5% is released
in the form of heat. Although the industrial and residential/commercial use of energy is rel-
atively more efficient, opportunities for energy conservation abound. Creative thermal
engineering, utilizing the tools of thermodynamics and heat transfer, can lead to new ways
to (1) increase the efficiency by which energy is generated and converted, (2) reduce
energy losses, and (3) harvest a large portion of the waste heat.

As evident in Figure 1.11a, fossil fuels (petroleum, natural gas, and coal) dominate the
energy portfolio in many countries, such as the United States. The combustion of fossil
fuels produces massive amounts of carbon dioxide; the amount of CO, released in the
United States on an annual basis due to combustion is currently 5.99 Eg (5.99 X 10" kg).
As more CO, is pumped into the atmosphere, mechanisms of radiation heat transfer within
the atmosphere are modified, resulting in potential changes in global temperatures. In a
country like the United States, electricity generation and transportation are responsible for
nearly 75% of the total CO, released into the atmosphere due to energy use (Figure 1.115).

What are some of the ways engineers are applying the principles of heat transfer to
address issues of energy and environmental sustainability?

The efficiency of a gas turbine engine can be significantly increased by increasing its
operating temperature. Today, the temperatures of the combustion gases inside these
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Alternative sources 6.8%
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FIGURE 1.11  Flow charts for energy consumption and associated CO, emissions in
the United States in 2007. () Energy production and consumption. (b) Carbon dioxide
by source of fossil fuel and end-use application. Arrow widths represent relative
magnitudes of the flow streams. (Credit: U.S. Department of Energy and the Lawrence
Livermore National Laboratory.)

engines far exceed the melting point of the exotic alloys used to manufacture the turbine
blades and vanes. Safe operation is typically achieved by three means. First, relatively cool
gases are injected through small holes at the leading edge of a turbine blade (Figure 1.12).
These gases hug the blade as they are carried downstream and help insulate the blade from
the hot combustion gases. Second, thin layers of a very low thermal conductivity, ceramic
thermal barrier coating are applied to the blades and vanes to provide an extra layer of
insulation. These coatings are produced by spraying molten ceramic powders onto the
engine components using extremely high temperature sources such as plasma spray guns
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(a) (b)

Figure 1.12  Gas turbine blade. (a) External view showing holes for injection of
cooling gases. (b) X ray view showing internal cooling passages. (Credit: Images courtesy

of FarField Technology, Ltd., Christchurch, New Zealand.)

that can operate in excess of 10,000 kelvins. Third, the blades and vanes are designed with
intricate, internal cooling passages, all carefully configured by the heat transfer engineer to
allow the gas turbine engine to operate under such extreme conditions.

Alternative sources constitute a small fraction of the energy portfolio of many nations,
as illustrated in the flow chart of Figure 1.11a for the United States. The intermittent nature
of the power generated by sources such as the wind and solar irradiation limits their wide-
spread utilization, and creative ways to store excess energy for use during low-power gen-
eration periods are urgently needed. Emerging energy conversion devices such as fuel cells
could be used to (1) combine excess electricity that is generated during the day (in a solar
power station, for example) with liquid water to produce hydrogen, and (2) subsequently
convert the stored hydrogen at night by recombining it with oxygen to produce electricity
and water. Roadblocks hindering the widespread use of hydrogen fuel cells are their size,
weight, and limited durability. As with the gas turbine engine, the efficiency of a fuel cell
increases with temperature, but high operating temperatures and large temperature gradi-
ents can cause the delicate polymeric materials within a hydrogen fuel cell to fail.

More challenging is the fact that water exists inside any hydrogen fuel cell. If this water
should freeze, the polymeric materials within the fuel cell would be destroyed, and the fuel
cell would cease operation. Because of the necessity to utilize very pure water in a hydrogen
fuel cell, common remedies such as antifreeze cannot be used. What heat transfer mecha-
nisms must be controlled to avoid freezing of pure water within a fuel cell located at a wind
farm or solar energy station in a cold climate? How might your developing knowledge of
internal forced convection, evaporation, or condensation be applied to control the operating
temperatures and enhance the durability of a fuel cell, in turn promoting more widespread use
of solar and wind power?

Due to the information technology revolution of the last two decades, strong industrial
productivity growth has brought an improved quality of life worldwide. Many information
technology breakthroughs have been enabled by advances in heat transfer engineering that
have ensured the precise control of temperatures of systems ranging in size from nanoscale
integrated circuits, to microscale storage media including compact discs, to large data centers
filled with heat-generating equipment. As electronic devices become faster and incorporate



44

Chapter 1 m Introduction

greater functionality, they generate more thermal energy. Simultaneously, the devices have
become smaller. Inevitably, heat fluxes (W/m?) and volumetric energy generation rates
(W/m?*) keep increasing, but the operating temperatures of the devices must be held to reason-
ably low values to ensure their reliability.

For personal computers, cooling fins (also known as heat sinks) are fabricated of a high
thermal conductivity material (usually aluminum) and attached to the microprocessors to
reduce their operating temperatures, as shown in Figure 1.13. Small fans are used to induce
forced convection over the fins. The cumulative energy that is consumed worldwide, just to
(1) power the small fans that provide the airflow over the fins and (2) manufacture the heat
sinks for personal computers, is estimated to be over 10° kW -h per year [6]. How might your
knowledge of conduction, convection, and radiation be used to, for example, eliminate the fan
and minimize the size of the heat sink?

Further improvements in microprocessor technology are currently limited by our ability to
cool these tiny devices. Policy makers have voiced concern about our ability to continually
reduce the cost of computing and, in turn as a society, continue the growth in productivity that
has marked the last 30 years, specifically citing the need to enhance heat transfer in electronics
cooling [7]. How might your knowledge of heat transfer help ensure continued industrial pro-
ductivity into the future?

Heat transfer is important not only in engineered systems but also in nature. Temperature
regulates and triggers biological responses in all living systems and ultimately marks the
boundary between sickness and health. Two common examples include hypothermia, which
results from excessive cooling of the human body, and heat stroke, which is triggered in
warm, humid environments. Both are deadly, and both are associated with core temperatures
of the body exceeding physiological limits. Both are directly linked to the convection, radia-
tion, and evaporation processes occurring at the surface of the body, the transport of heat
within the body, and the metabolic energy generated volumetrically within the body.

Recent advances in biomedical engineering, such as laser surgery, have been enabled
by successfully applying fundamental heat transfer principles [8, 9]. While increased tem-
peratures resulting from contact with hot objects may cause thermal burns, beneficial
hyperthermal treatments are used to purposely destroy, for example, cancerous lesions. In a

\ Ficure 1.13 A finned heat sink and fan assembly

(left) and microprocessor (right).

Exploded view
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Ficure 1.14  Morphology of human skin.

similar manner, very low temperatures might induce frostbite, but purposeful localized
freezing can selectively destroy diseased tissue during cryosurgery. Many medical thera-
pies and devices therefore operate by destructively heating or cooling diseased tissue, while
leaving the surrounding healthy tissue unaffected.

The ability to design many medical devices and to develop the appropriate protocol for
their use hinges on the engineer’s ability to predict and control the distribution of temperatures
during thermal treatment and the distribution of chemical species in chemotherapies. The treat-
ment of mammalian tissue is made complicated by its morphology, as shown in
Figure 1.14. The flow of blood within the venular and capillary structure of a thermally treated
area affects heat transfer through advection processes. Larger veins and arteries, which com-
monly exist in pairs throughout the body, carry blood at different temperatures and advect ther-
mal energy at different rates. Therefore, the veins and arteries exist in a counterow heat
exchange arrangement with warm, arteriolar blood exchanging thermal energy with the cooler,
venular blood through the intervening solid tissue. Networks of smaller capillaries can also
affect local temperatures by perfusing blood through the treated area.

In subsequent chapters, example and homework problems will deal with the analysis of
these and many other thermal systems.

Summary

Although much of the material of this chapter will be discussed in greater detail, you
should now have a reasonable overview of heat transfer. You should be aware of the
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TABLE 1.5 Summary of heat transfer processes

Transport
Equation Property or
Mode Mechanism(s) Rate Equation Number Coefcient
Conduction Diffusion of energy due q"(Wim?) = —kd—T (1.1) k (W/m - K)
to random molecular dx
motion
Convection Diffusion of energy due ¢'Wm? = T, — T.) (1.3a) h (W/m?- K)
to random molecular
motion plus energy
transfer due to bulk
motion (advection)
Radiation Energy transfer by ¢'Wm?) = eo(T! — T) (1.7) e
electromagnetic waves or g(W) = hA(T, — Ty) (1.8) h, (W/m?-K)

several modes of transfer and their physical origins. You will be devoting much time to
acquiring the tools needed to calculate heat transfer phenomena. However, before you can
use these tools effectively, you must have the intuition to determine what is happening
physically. Specifically, given a physical situation, you must be able to identify the relevant
transport phenomena; the importance of developing this facility must not be underesti-
mated. The example and problems at the end of this chapter will launch you on the road to
developing this intuition.

You should also appreciate the significance of the rate equations and feel comfortable
in using them to compute transport rates. These equations, summarized in Table 1.5, should
be commiitted to memory. You must also recognize the importance of the conservation laws
and the need to carefully identify control volumes. With the rate equations, the conserva-
tion laws may be used to solve numerous heat transfer problems.

Lastly, you should have begun to acquire an appreciation for the terminology and
physical concepts that underpin the subject of heat transfer. Test your understanding of
the important terms and concepts introduced in this chapter by addressing the following
questions:

e What are the physical mechanisms associated with heat transfer by conduction, convec-
tion, and radiation?

e What is the driving potential for heat transfer? What are analogs to this potential and to
heat transfer itself for the transport of electric charge?

* What is the difference between a heat ux and a heat rate? What are their units?

e What is a temperature gradient? What are its units? What is the relationship of heat
flow to a temperature gradient?

e What is the thermal conductivity? What are its units? What role does it play in heat
transfer?

e What is Fourier$ law ? Can you write the equation from memory?

e If heat transfer by conduction through a medium occurs under steady-state conditions,
will the temperature at a particular instant vary with location in the medium? Will the
temperature at a particular location vary with time?
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* What is the difference between natural convection and forced convection?

* What conditions are necessary for the development of a hydrodynamic boundary layer?
A thermal boundary layer? What varies across a hydrodynamic boundary layer? Across
a thermal boundary layer?

* If convection heat transfer for flow of a liquid or a vapor is not characterized by
liquid/vapor phase change, what is the nature of the energy being transferred? What is it
if there is such a phase change?

* What is Newtons$ law of cooling ? Can you write the equation from memory?

* What role is played by the convection heat transfer coefcient in Newton’s law of
cooling? What are its units?

* What effect does convection heat transfer from or to a surface have on the solid
bounded by the surface?

* What is predicted by the Stefan—Boltzmann law, and what unit of temperature must be
used with the law? Can you write the equation from memory?

* What is the emissivity, and what role does it play in characterizing radiation transfer at
a surface?

* What is irradiation? What are its units?

* What two outcomes characterize the response of an opaque surface to incident radia-
tion? Which outcome affects the thermal energy of the medium bounded by the surface
and how? What property characterizes this outcome?

* What conditions are associated with use of the radiation heat transfer coefcient ?

* Can you write the equation used to express net radiation exchange between a small
isothermal surface and a large isothermal enclosure?

* Consider the surface of a solid that is at an elevated temperature and exposed to cooler
surroundings. By what mode(s) is heat transferred from the surface if (1) it is in inti-
mate (perfect) contact with another solid, (2) it is exposed to the flow of a liquid, (3) it
is exposed to the flow of a gas, and (4) it is in an evacuated chamber?

* What is the inherent difference between the application of conservation of energy over
a time interval and at an instant of time’!

* What is thermal energy storage? How does it differ from thermal energy generation?
What role do the terms play in a surface energy balance?

ExampPLE 1.10

A closed container filled with hot coffee is in a room whose air and walls are at a fixed tem-
perature. Identify all heat transfer processes that contribute to the cooling of the coffee.
Comment on features that would contribute to a superior container design.

SOLUTION
|

Known: Hot coffee is separated from its cooler surroundings by a plastic flask, an air
space, and a plastic cover.

Find: Relevant heat transfer processes.
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Schematic:
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Pathways for energy transfer from the coffee are as follows:
q,: free convection from the coffee to the flask.

q5. free convection from the flask to the air.
q,: free convection from the air to the cover.
gs: et radiation exchange between the outer surface of the flask and the inner surface

q;: free convection from the cover to the room air.

qs: net radiation exchange between the outer surface of the cover and the surroundings.

Commenis: Design improvements are associated with (1) use of aluminized (low-
emissivity) surfaces for the flask and cover to reduce net radiation, and (2) evacuating the
air space or using a filler material to retard free convection.
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Problems
Conduction 1.7 The inner and outer surface temperatures of a glass
window 5 mm thick are 15 and 5°C. What is the heat
1.1 The thermal conductivity of a sheet of rigid, extruded loss through a 1 m X 3 m window? The thermal con-
insulation is reported to be k= 0.029 W/m-K. The ductivity of glass is 1.4 W/m - K.
d t ture diff 20-mm-thick
r‘neasure eperature 1 erenci acrs) 5 @ STrmm-thie 1.8 A thermodynamic analysis of a proposed Brayton cycle
sheet of the material is 7, — T, = 10°C. . . )
) gas turbine yields P =5 MW of net power production.
(@) Wh?t 18 th? heat flux through a 2 m X 2 m sheet of The compressor, at an average temperature of 7, = 400°C,
the insulation? is driven by the turbine at an average temperature of
(b) What is the rate of heat transfer through the sheet T, = 1000°C by way of an L = 1-m-long, d = 70-mm-
of insulation? diameter shaft of thermal conductivity k = 40 W/m* K.
1.2 The heat flux that is applied to the left face of a plane
wall is ¢" = 20 W/m?. The wall is of thickness L = 10 )
e chamber Turbine
mm and of thermal conductivity K = 12 W/m-K. If the Compressor

surface temperatures of the wall are measured to be
50°C on the left side and 30°C on the right side, do
steady-state conditions exist?

A concrete wall, which has a surface area of 20 m? and

1.4

1.5

1.6

is 0.30 m thick, separates conditioned room air from
ambient air. The temperature of the inner surface of the
wall is maintained at 25°C, and the thermal conductiv-
ity of the concrete is 1 W/m-K.

(a) Determine the heat loss through the wall for outer
surface temperatures ranging from —15°C to 38°C,
which correspond to winter and summer extremes,
respectively. Display your results graphically.

(b) On your graph, also plot the heat loss as a function of
the outer surface temperature for wall materials hav-
ing thermal conductivities of 0.75 and 1.25 W/m-K.
Explain the family of curves you have obtained.

The concrete slab of a basement is 11 m long, 8 m wide,
and 0.20 m thick. During the winter, temperatures are
nominally 17°C and 10°C at the top and bottom surfaces,
respectively. If the concrete has a thermal conductivity
of 1.4 W/m-K, what is the rate of heat loss through the
slab? If the basement is heated by a gas furnace operat-
ing at an efficiency of 7, = 0.90 and natural gas is priced
atC, = $0.02/M1J, what is the daily cost of the heat loss?

Consider Figure 1.3. The heat flux in the x-direction is
q" = 10 W/m?, the thermal conductivity and wall thick-
ness are k = 2.3 W/m+K and L = 20 mm, respectively,
and steady-state conditions exist. Determine the value of
the temperature gradient in units of K/m. What is the
value of the temperature gradient in units of °C/m?

The heat flux through a wood slab 50 mm thick, whose
inner and outer surface temperatures are 40 and 20°C,
respectively, has been determined to be 40 W/m?>. What
is the thermal conductivity of the wood?

1.9

1.10

(a

=

Compare the steady-state conduction rate through
the shaft connecting the hot turbine to the warm
compressor to the net power predicted by the ther-
modynamics-based analysis.

(b) A research team proposes to scale down the gas
turbine of part (a), keeping all dimensions in the
same proportions. The team assumes that the same
hot and cold temperatures exist as in part (a) and
that the net power output of the gas turbine is pro-
portional to the overall volume of the device. Plot
the ratio of the conduction through the shaft to the
net power output of the turbine over the range
0.005 m = L = 1 m. Is a scaled-down device with
L = 0.005 m feasible?

A glass window of width W = 1 m and height H = 2 m
is 5 mm thick and has a thermal conductivity of k, =
1.4 W/m-K. If the inner and outer surface temperatures
of the glass are 15°C and —20°C, respectively, on a
cold winter day, what is the rate of heat loss through the
glass? To reduce heat loss through windows, it is cus-
tomary to use a double pane construction in which
adjoining panes are separated by an air space. If the
spacing is 10 mm and the glass surfaces in contact with
the air have temperatures of 10°C and —15°C, what
is the rate of heat loss from a 1 m X 2 m window? The
thermal conductivity of air is k, = 0.024 W/m*K.

A freezer compartment consists of a cubical cavity that
is 2m on a side. Assume the bottom to be perfectly
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1.12

1.13

1.14

1.15

1.16
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insulated. What is the minimum thickness of styrofoam
insulation (k = 0.030 W/m - K) that must be applied to the
top and side walls to ensure a heat load of less than 500 W,
when the inner and outer surfaces are — 10 and 35°C?

The heat flux that is applied to one face of a plane wall
is ¢" = 20 W/m The opposite face is exposed to air at
temperature 30°C, with a convection heat transfer coef-
ficient of 20 W/m? K. The surface temperature of the
wall exposed to air is measured and found to be 50°C.
Do steady-state conditions exist? If not, is the tempera-
ture of the wall increasing or decreasing with time?

An inexpensive food and beverage container is fabricated
from 25-mm-thick polystyrene (k = 0.023 W/m-K) and
has interior dimensions of 0.8 m X 0.6 m X 0.6 m. Under
conditions for which an inner surface temperature of
approximately 2°C is maintained by an ice-water mixture
and an outer surface temperature of 20°C is maintained
by the ambient, what is the heat flux through the container
wall? Assuming negligible heat gain through the 0.8 m X
0.6 m base of the cooler, what is the total heat load for the
prescribed conditions?

What is the thickness required of a masonry wall having
thermal conductivity 0.75 W/m- K if the heat rate is to be
80% of the heat rate through a composite structural wall
having a thermal conductivity of 0.25 W/m-K and a
thickness of 100 mm? Both walls are subjected to the
same surface temperature difference.

A wall is made from an inhomogeneous (nonuniform)
material for which the thermal conductivity varies
through the thickness according to k = ax + b, where a
and b are constants. The heat flux is known to be con-
stant. Determine expressions for the temperature gradi-
ent and the temperature distribution when the surface at
x = 0 is at temperature 7.

The 5-mm-thick bottom of a 200-mm-diameter pan
may be made from aluminum (k = 240 W/m*K) or
copper (k = 390 W/m+K). When used to boil water,
the surface of the bottom exposed to the water is nomi-
nally at 110°C. If heat is transferred from the stove to
the pan at a rate of 600 W, what is the temperature
of the surface in contact with the stove for each of the
two materials?

A square silicon chip (k= 150 W/m-K) is of width
w = 5mm on a side and of thickness = 1 mm. The
chip is mounted in a substrate such that its side and
back surfaces are insulated, while the front surface is
exposed to a coolant. If 4 W are being dissipated in cir-
cuits mounted to the back surface of the chip, what is
the steady-state temperature difference between back
and front surfaces?

—_—
Coolant
w
I
-/— Circuits
/
?‘_'L ______ v

Convection

1.17

1.18

For a boiling process such as shown in Figure 1.5¢, the
ambient temperature 7, in Newton’s law of cooling is
replaced by the saturation temperature of the fluid T,.
Consider a situation where the heat flux from the hot
plate is ¢” = 20 X 10> W/m?. If the fluid is water at
atmospheric pressure and the convection heat transfer
coefficient is A, = 20 X 10* W/m*-K, determine the
upper surface temperature of the plate, 7 ,,. In an effort
to minimize the surface temperature, a technician
proposes replacing the water with a dielectric fluid
whose saturation temperature is Ty, = 52°C. If the
heat transfer coefficient associated with the dielectric
fluid is h, = 3 X 10* W/m?-K, will the technician’s
plan work?

You’ve experienced convection cooling if you’ve ever
extended your hand out the window of a moving vehi-
cle or into a flowing water stream. With the surface of
your hand at a temperature of 30°C, determine the con-
vection heat flux for (a) a vehicle speed of 35 km/h in
air at —5°C with a convection coefficient of 40
W/m? - K and (b) a velocity of 0.2 m/s in a water stream
at 10°C with a convection coefficient of 900 W/m? - K.
Which condition would feel colder? Contrast these
results with a heat loss of approximately 30 W/m?
under normal room conditions.

Air at 40°C flows over a long, 25-mm-diameter cylinder

with an embedded electrical heater. In a series of tests,
measurements were made of the power per unit length,
P’, required to maintain the cylinder surface tempera-
ture at 300°C for different free stream velocities V of the
air. The results are as follows:

12
1963

Air velocity, V (m/s) 1 2 4 8
Power, P’ (W/m) 450 658 983 1507

(a) Determine the convection coefficient for each
velocity, and display your results graphically.

(b) Assuming the dependence of the convection coeffi-
cient on the velocity to be of the form 4 = CV",
determine the parameters C and n from the results
of part (a).
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A wall has inner and outer surface temperatures of 16
and 6°C, respectively. The interior and exterior air tem-
peratures are 20 and 5°C, respectively. The inner and
outer convection heat transfer coefficients are 5 and
20 W/m?*K, respectively. Calculate the heat flux from
the interior air to the wall, from the wall to the exterior
air, and from the wall to the interior air. Is the wall
under steady-state conditions?

An electric resistance heater is embedded in a long
cylinder of diameter 30 mm. When water with a tem-
perature of 25°C and velocity of 1 m/s flows crosswise
over the cylinder, the power per unit length required to
maintain the surface at a uniform temperature of 90°C
is 28 kW/m. When air, also at 25°C, but with a velocity
of 10 m/s is flowing, the power per unit length required
to maintain the same surface temperature is 400 W/m.
Calculate and compare the convection coefficients for
the flows of water and air.

The free convection heat transfer coefficient on a thin
hot vertical plate suspended in still air can be deter-
mined from observations of the change in plate temper-
ature with time as it cools. Assuming the plate is
isothermal and radiation exchange with its surround-
ings is negligible, evaluate the convection coefficient at
the instant of time when the plate temperature is 225°C
and the change in plate temperature with time (d77/dt) is
—0.022 K/s. The ambient air temperature is 25°C and
the plate measures 0.3 X 0.3 m with a mass of 3.75 kg
and a specific heat of 2770 J/kg - K.

A transmission case measures W = 0.30 m on a side
and receives a power input of P; = 150 hp from the
engine.

Transmission case, n, T

If the transmission efficiency is n = 0.93 and airflow
over the case corresponds to T,, = 30°C and i = 200
W/m?-K, what is the surface temperature of the
transmission?

1.24

1.25

1.26

1.27
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A cartridge electrical heater is shaped as a cylinder of
length L = 200 mm and outer diameter D = 20 mm.
Under normal operating conditions, the heater dissipates
2 kW while submerged in a water flow that is at 20°C
and provides a convection heat transfer coefficient of
h = 5000 W/m? - K. Neglecting heat transfer from the
ends of the heater, determine its surface temperature 7.
If the water flow is inadvertently terminated while the
heater continues to operate, the heater surface is
exposed to air that is also at 20°C but for which 7 = 50
W/m?+K. What is the corresponding surface tempera-
ture? What are the consequences of such an event?

A common procedure for measuring the velocity of an
airstream involves the insertion of an electrically heated
wire (called a hot-wire anemometer) into the airflow,
with the axis of the wire oriented perpendicular to the
flow direction. The electrical energy dissipated in
the wire is assumed to be transferred to the air by forced
convection. Hence, for a prescribed electrical power, the
temperature of the wire depends on the convection coef-
ficient, which, in turn, depends on the velocity of the air.
Consider a wire of length L =20 mm and diameter
D = 0.5 mm, for which a calibration of the form
V = 6.25 X 107° h? has been determined. The velocity V
and the convection coefficient # have units of m/s and
W/m?- K, respectively. In an application involving air at
a temperature of T,, = 25°C, the surface temperature of
the anemometer is maintained at 7, = 75°C with a volt-
age drop of 5 V and an electric current of 0.1 A. What is
the velocity of the air?

A square isothermal chip is of width w =5 mm on a
side and is mounted in a substrate such that its side and
back surfaces are well insulated; the front surface is
exposed to the flow of a coolant at T,, = 15°C. From
reliability considerations, the chip temperature must not
exceed T = 85°C.

Coolant

If the coolant is air and the corresponding convection
coefficient is 7 = 200 W/m?- K, what is the maximum
allowable chip power? If the coolant is a dielectric
liquid for which 2 = 3000 W/m?-K, what is the maxi-
mum allowable power?

The temperature controller for a clothes dryer consists
of a bimetallic switch mounted on an electrical heater
attached to a wall-mounted insulation pad.
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s Dryer wall

P,——> —F — )
Wﬂ _‘ Insulation pad

Electrical heater
L7, =70C ] A T
Bimetallic switch

Air

h —>

The switch is set to open at 70°C, the maximum dryer
air temperature. To operate the dryer at a lower air tem-
perature, sufficient power is supplied to the heater such that
the switch reaches 70°C (7,.,) when the air temperature T
is less than 7. If the convection heat transfer coefficient
between the air and the exposed switch surface of 30 mm?
is 25 W/m?+K, how much heater power P, is required
when the desired dryer air temperature is T,, = 50°C?

Radiation

1.28

1.29

1.30

An overhead 25-m-long, uninsulated industrial steam
pipe of 100-mm diameter is routed through a building
whose walls and air are at 25°C. Pressurized steam
maintains a pipe surface temperature of 150°C, and the
coefficient associated with natural convection is 7 = 10
W/m? - K. The surface emissivity is & = 0.8.

(a) What is the rate of heat loss from the steam line?

(b) If the steam is generated in a gas-fired boiler oper-
ating at an efficiency of 7, = 0.90 and natural gas is
priced at C, = $0.02 per MJ, what is the annual
cost of heat loss from the line?

Under conditions for which the same room temperature
is maintained by a heating or cooling system, it is not
uncommon for a person to feel chilled in the winter but
comfortable in the summer. Provide a plausible expla-
nation for this situation (with supporting calculations)
by considering a room whose air temperature is main-
tained at 20°C throughout the year, while the walls of
the room are nominally at 27°C and 14°C in the sum-
mer and winter, respectively. The exposed surface of a
person in the room may be assumed to be at a tempera-
ture of 32°C throughout the year and to have an emis-
sivity of 0.90. The coefficient associated with heat
transfer by natural convection between the person and
the room air is approximately 2 W/m?*- K.

A spherical interplanetary probe of 0.5-m diameter con-
tains electronics that dissipate 150 W. If the probe surface
has an emissivity of 0.8 and the probe does not receive
radiation from other surfaces, as, for example, from the
sun, what is its surface temperature?

An instrumentation package has a spherical outer surface

of diameter D = 100 mm and emissivity & = 0.25. The
package is placed in a large space simulation chamber
whose walls are maintained at 77 K. If operation of the
electronic components is restricted to the temperature

1.32

1.33

1.34

range 40 = T = 85°C, what is the range of acceptable
power dissipation for the package? Display your results
graphically, showing also the effect of variations in the
emissivity by considering values of 0.20 and 0.30.

Consider the conditions of Problem 1.22. However, now
the plate is in a vacuum with a surrounding temperature
of 25°C. What is the emissivity of the plate? What is the
rate at which radiation is emitted by the surface?

If T, = Ty, in Equation 1.9, the radiation heat transfer

coefficient may be approximated as
h,.,= 4e0T?

where T = (T, + T,,,)/2. We wish to assess the validity
of this approximation by comparing values of 4, and
h, , for the following conditions. In each case, represent
your results graphically and comment on the validity of
the approximation.

(a) Consider a surface of either polished aluminum (¢ =
0.05) or black paint (¢ = 0.9), whose temperature
may exceed that of the surroundings (T, = 25°C)
by 10 to 100 C. Also compare your results with val-
ues of the coefficient associated with free convection
in air (T, = T,,,), where h(W/m?-K) = 0.98 AT'~,
Consider initial conditions associated with placing a
workpiece at 7, = 25°C in a large furnace whose
wall temperature may be varied over the range 100 =
T = 1000°C. According to the surface finish or
coating, its emissivity may assume values of 0.05,
0.2, and 0.9. For each emissivity, plot the relative
error, (h,—h,,)/h,, as a function of the furnace
temperature.

(b)

A vacuum system, as used in sputtering electrically con-
ducting thin films on microcircuits, is comprised of a
baseplate maintained by an electrical heater at 300 K and
a shroud within the enclosure maintained at 77 K by a
liquid-nitrogen coolant loop. The circular baseplate,
insulated on the lower side, is 0.3 m in diameter and has
an emissivity of 0.25.

— Vacuum
enclosure

Liquid-nitrogen
filled shroud

= <— LN,

[LITTTTTTITTITTITTTITTT

Electrical heater
— Baseplate




m Problems

(a) How much electrical power must be provided to
the baseplate heater?

(b) At what rate must liquid nitrogen be supplied to the
shroud if its heat of vaporization is 125 kJ/kg?

(c) To reduce the liquid nitrogen consumption, it is
proposed to bond a thin sheet of aluminum foil
(e = 0.09) to the baseplate. Will this have the desired
effect?

Relationship to Thermodynamics

1.35

1.36

An electrical resistor is connected to a battery, as
shown schematically. After a brief transient, the resistor
assumes a nearly uniform, steady-state temperature of
95°C, while the battery and lead wires remain at the
ambient temperature of 25°C. Neglect the electrical
resistance of the lead wires.

I=6A
—
Resistor
Battery
Air
V=24V T, = 25C
Lead wire

(a) Consider the resistor as a system about which
a control surface is placed and Equation 1.12c
is applied. Determine the corresponding values of
E.(W), E,(W), E. (W), and E((W). If a control
surface is placed about the entire system, what are
the values of E;,, E,, E,,, and E?

(b) If electrical energy is dissipated uniformly within the
resistor, which is a cylinder of diameter D = 60 mm
and length L = 250 mm, what is the volumetric heat

generation rate, ¢ (W/m?)?

(©

Neglecting radiation from the resistor, what is the
convection coefficient?

Pressurized water (p;, = 10 bar, T;, = 110°C) enters the
bottom of an L = 10-m-long vertical tube of diameter
D = 100 mm at a mass flow rate of m = 1.5 kg/s. The
tube is located inside a combustion chamber, resulting
in heat transfer to the tube. Superheated steam exits the
top of the tube at p,,, = 7 bar, T,,, = 600°C. Determine
the change in the rate at which the following quantities
enter and exit the tube: (a) the combined thermal and
flow work, (b) the mechanical energy, and (c) the total
energy of the water. Also, (d) determine the heat trans-
fer rate, q. Hint: Relevant properties may be obtained
from a thermodynamics text.

1.37
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Consider the tube and inlet conditions of Problem 1.36.
Heat transfer at a rate of ¢ = 3.89 MW is delivered to
the tube. For an exit pressure of p = § bar, determine
(a) the temperature of the water at the outlet as well as
the change in (b) combined thermal and flow work,
(c) mechanical energy, and (d) total energy of the water
from the inlet to the outlet of the tube. Hint: As a first
estimate, neglect the change in mechanical energy in
solving part (a). Relevant properties may be obtained
from a thermodynamics text.

An internally reversible refrigerator has a modified
coefficient of performance accounting for realistic heat
transfer processes of

Gin in T(L,i
P =—= =
co " W Gout — Gin Th,i -T

c,l

where g, is the refrigerator cooling rate, ¢, is the heat
rejection rate, and W is the power input. Show that COP,,
can be expressed in terms of the reservoir temperatures
T, and T, the cold and hot thermal resistances R,. and
R,;, and g;,, as

Tc - CIianol

COPm - Th - T(‘ + qianot

where R, = R,. + R,;. Also, show that the power input
may be expressed as

Th B Tc + qianl

W= in Tc - qianot

High-temperature

. L Th
resenvoir 4 g r
L* T, .
High-temperature
Internally side resistance
A reversible

Low-temperature

refrigerator { |
side resistance

— T,
—
I Qin Li T

Low-temperature ¢
reservoir

A household refrigerator operates with cold- and
hot-temperature reservoirs of 7, = 5°C and 7, = 25°C,
respectively. When new, the cold and hot side resistances
are R., = 0.05 K/W and R, = 0.04 K/W, respectively.
Over time, dust accumulates on the refrigerator’s con-
denser coil, which is located behind the refrigerator,
increasing the hot side resistance to R, ; = 0.1 K/W. It is
desired to have a refrigerator cooling rate of g;, = 750 W.
Using the results of Problem 1.38, determine the modified
coefficient of performance and the required power input
W under (a) clean and (b) dusty coil conditions.
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Energy Balance and Multimode Effects

1.40

141

1.42

Chips of width L = 15 mm on a side are mounted to a
substrate that is installed in an enclosure whose walls
and air are maintained at a temperature of 7, = 25°C.
The chips have an emissivity of ¢ = 0.60 and a maxi-
mum allowable temperature of T, = 85°C.

Enclosure, T,

Chip (T}, &)

(a) If heat is rejected from the chips by radiation and
natural convection, what is the maximum operating
power of each chip? The convection coefficient
depends on the chip-to-air temperature difference
and may be approximated as h = C(T, — T.,)",
where C = 4.2 W/m?- K>,

(b) If a fan is used to maintain airflow through the
enclosure and heat transfer is by forced convection,
with 4 =250 W/m?-K, what is the maximum

operating power?

Consider the transmission case of Problem 1.23, but
now allow for radiation exchange with the ground/
chassis, which may be approximated as large surround-
ings at Ty, = 30°C. If the emissivity of the case is
& = 0.80, what is the surface temperature?

One method for growing thin silicon sheets for photo-
voltaic solar panels is to pass two thin strings of high
melting temperature material upward through a bath of
molten silicon. The silicon solidifies on the strings near
the surface of the molten pool, and the solid silicon sheet
is pulled slowly upward out of the pool. The silicon is
replenished by supplying the molten pool with solid sili-
con powder. Consider a silicon sheet that is W; = 85 mm
wide and 7; = 150 um thick that is pulled at a velocity of
Vi = 20 mm/min. The silicon is melted by supplying
electric power to the cylindrical growth chamber of
height H =350 mm and diameter D = 300 mm. The
exposed surfaces of the growth chamber are at 7, =
320 K, the corresponding convection coefficient at the

) : i Lo
o :B—‘; Tye
| b &
®  Solid _;
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exposed surface is 4 =8 W/m?+K, and the surface is
characterized by an emissivity of &, = 0.9. The solid sili-
con powder is at T;; = 298 K, and the solid silicon sheet
exits the chamber at 7;; , = 420 K. Both the surroundings
and ambient temperatures are T, = T, = 298 K.

Solid silicon powder |

Solid
silicon
sheet

e |

Molten silicon

Crucible

H —=
. silicon T——, =
sheet | Molten silicon
o |
| A~ String
7° R —d
! L
= 1)
Pelec 4 g

t———D

(a) Determine the electric power, P, needed to oper-
ate the system at steady state.

(b) If the photovoltaic panel absorbs a time-averaged
solar flux of g, = 180 W/m? and the panel has a
conversion efficiency (the ratio of solar power
absorbed to electric power produced) of n = 0.20,
how long must the solar panel be operated to pro-
duce enough electric energy to offset the electric
energy that was consumed in its manufacture?

Heat is transferred by radiation and convection between
the inner surface of the nacelle of the wind turbine of
Example 1.3 and the outer surfaces of the gearbox and
generator. The convection heat flux associated with
the gearbox and the generator may be described
by q’c’onv,gb = h(Tgb - Tw) and qzonv,gcn = h(Tgcn - Too)v
respectively, where the ambient temperature 7, = T}
(which is the nacelle temperature) and 4 = 40 W/m?- K.
The outer surfaces of both the gearbox and the generator
are characterized by an emissivity of ¢ = 0.9. If the sur-
face areas of the gearbox and generator are A, = 6 m?
and Ay, = 4m?, respectively, determine their surface
temperatures.

Radioactive wastes are packed in a long, thin-walled
cylindrical container. The wastes generate thermal energy
nonuniformly according to the relation g =g, [1 —
(r/r,)’], where g is the local rate of energy generation per
unit volume, ¢, is a constant, and r, is the radius of the
container. Steady-state conditions are maintained by sub-
merging the container in a liquid that is at 7, and pro-
vides a uniform convection coefficient .
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g=q,[1- ()2

Obtain an expression for the total rate at which energy
is generated in a unit length of the container. Use this
result to obtain an expression for the temperature 7 of the
container wall.

1.45 An aluminum plate 4 mm thick is mounted in a

horizontal position, and its bottom surface is well insu-
lated. A special, thin coating is applied to the top
surface such that it absorbs 80% of any incident solar
radiation, while having an emissivity of 0.25. The
density p and specific heat ¢ of aluminum are known to
be 2700 kg/m® and 900 J/kg - K, respectively.

(a) Consider conditions for which the plate is at a tem-
perature of 25°C and its top surface is suddenly
exposed to ambient air at 7, = 20°C and to solar
radiation that provides an incident flux of 900 W/m?.
The convection heat transfer coefficient between the
surface and the air is # = 20 W/m*-K. What is the
initial rate of change of the plate temperature?

(b)

What will be the equilibrium temperature of the
plate when steady-state conditions are reached?

m The surface radiative properties depend on the spe-
cific nature of the applied coating. Compute and plot
the steady-state temperature as a function of the
emissivity for 0.05 = & = 1, with all other conditions
remaining as prescribed. Repeat your calculations for
values of ag = 0.5 and 1.0, and plot the results with
those obtained for ag = 0.8. If the intent is to maxi-
mize the plate temperature, what is the most
desirable combination of the plate emissivity and its
absorptivity to solar radiation?

1.46 A blood warmer is to be used during the transfusion of

blood to a patient. This device is to heat blood taken
from the blood bank at 10°C to 37°C at a flow rate of
200 ml/min. The blood passes through tubing of length
2 m, with a rectangular cross section 6.4 mm X 1.6 mm
At what rate must heat be added to the blood to accom-
plish the required temperature increase? If the fluid
originates from a large tank with nearly zero velocity
and flows vertically downward for its 2-m length,

1.47

1.48

1.49

55

estimate the magnitudes of kinetic and potential energy
changes. Assume the blood’s properties are similar to
those of water.

Consider a carton of milk that is refrigerated at a tem-
perature of 7,, = 5°C. The kitchen temperature on a hot
summer day is T,, = 30°C. If the four sides of the carton
are of height and width L = 200 mm and w = 100 mm,
respectively, determine the heat transferred to the milk
carton as it sits on the kitchen counter for durations of
t=10s, 60s, and 300 s before it is returned to the
refrigerator. The convection coefficient associated with
natural convection on the sides of the carton is 4 = 10
W/m?- K. The surface emissivity is 0.90. Assume the
milk carton temperature remains at 5°C during the
process. Your parents have taught you the importance of
refrigerating certain foods from the food safety perspec-
tive. Comment on the importance of quickly returning
the milk carton to the refrigerator from an energy con-
servation point of view.

The energy consumption associated with a home water
heater has two components: (i) the energy that must be
supplied to bring the temperature of groundwater to the
heater storage temperature, as it is introduced to replace
hot water that has been used; (ii) the energy needed to
compensate for heat losses incurred while the water is
stored at the prescribed temperature. In this problem,
we will evaluate the first of these components for a
family of four, whose daily hot water consumption is
approximately 100 gal. If groundwater is available at
15°C, what is the annual energy consumption associ-
ated with heating the water to a storage temperature of
55°C? For a unit electrical power cost of $0.18/kW -h,
what is the annual cost associated with supplying hot
water by means of (a) electric resistance heating or
(b) a heat pump having a COP of 3.

Liquid oxygen, which has a boiling point of 90 K and a
latent heat of vaporization of 214 kJ/kg, is stored in
a spherical container whose outer surface is of 500-mm
diameter and at a temperature of —10°C. The container is
housed in a laboratory whose air and walls are at 25°C.

(a) If the surface emissivity is 0.20 and the heat transfer
coefficient associated with free convection at the
outer surface of the container is 10 W/m?- K, what is
the rate, in kg/s, at which oxygen vapor must be
vented from the system?

(b) |Moisture in the ambient air will result in frost forma-
tion on the container, causing the surface emissivity
to increase. Assuming the surface temperature and
convection coefficient to remain at —10°C and
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10 W/m?- K, respectively, compute the oxygen evap-
oration rate (kg/s) as a function of surface emissivity
over the range 0.2 = ¢ = 0.94.

1.50 The emissivity of galvanized steel sheet, a common
roofing material, is ¢ = 0.13 at temperatures around
300 K, while its absorptivity for solar irradiation is
ag = 0.65. Would the neighborhood cat be comfortable
walking on a roof constructed of the material on a
day when Gg=750W/m?% T,=16°C, and h =17
W/m?-K? Assume the bottom surface of the steel is
insulated.

1.51 Three electric resistance heaters of length L = 250 mm
and diameter D = 25 mm are submerged in a 10-gal
tank of water, which is initially at 295 K. The water
may be assumed to have a density and specific heat of
p =990 kg/m® and ¢ = 4180 J/kg-K.

(a)

(b

=

©

If the heaters are activated, each dissipating
g, = 500 W, estimate the time required to bring the
water to a temperature of 335 K.

If the natural convection coefficient is given by an
expression of the form 4 = 370 (T, — T)'", where
T, and T are temperatures of the heater surface
and water, respectively, what is the temperature of
each heater shortly after activation and just before
deactivation? Units of # and (7, — T) are W/m*-K

and K, respectively.

If the heaters are inadvertently activated when the
tank is empty, the natural convection coefficient
associated with heat transfer to the ambient air at
T. =300K may be approximated as & = 0.70
(T, — T.,)". If the temperature of the tank walls is
also 300 K and the emissivity of the heater surface
is & = 0.85, what is the surface temperature of each
heater under steady-state conditions?

1.52 A hair dryer may be idealized as a circular duct through
which a small fan draws ambient air and within which
the air is heated as it flows over a coiled electric resis-
tance wire.

Surroundings, Ty,
Air

T, h
1 |
i 1 Electric resistor Fan
Discharge .
<« Dr—-1 -T— <— Inlet, v, T;
T()’ VO l
P
clee Dryer, 7, &

(a) If a dryer is designed to operate with an electric
power consumption of P, =500 W and to heat
air from an ambient temperature of 7, = 20°C to a
discharge temperature of T, = 45°C, at what volu-
metric flow rate V should the fan operate? Heat loss
from the casing to the ambient air and the surround-
ings may be neglected. If the duct has a diameter of
D =70 mm, what is the discharge velocity V, of
the air? The density and specific heat of the air may
be approximated as p = 1.10 kg/m® and ¢, = 1007
J/kg - K, respectively.

(b) Consider a dryer duct length of L = 150 mm and a
surface emissivity of & = 0.8. If the coefficient
associated with heat transfer by natural convection
from the casing to the ambient air is h =4
W/m?+K and the temperature of the air and the
surroundings is 7T, = Ty, = 20°C, confirm that
the heat loss from the casing is, in fact, negligible.
The casing may be assumed to have an average
surface temperature of 7T, = 40°C.

1.53 In one stage of an annealing process, 304 stainless steel
sheet is taken from 300K to 1250 K as it passes
through an electrically heated oven at a speed
of V, =10 mm/s. The sheet thickness and width are
t,=8mm and W, =2m, respectively, while the
height, width, and length of the oven are H, =2 m,
W, =2.4m, and L, = 25 m, respectively. The top and
four sides of the oven are exposed to ambient air
and large surroundings, each at 300 K, and the corre-
sponding surface temperature, convection coefficient,
and emissivity are T, = 350K, & = 10 W/m*-K, and
g, = 0.8. The bottom surface of the oven is also at
350 K and rests on a 0.5-m-thick concrete pad whose
base is at 300 K. Estimate the required electric power
input, P, to the oven.

Air —»
Tour T.,h —> T, &
L |
|

[ Lo
Pejec 7/ Steel sheet
e
—Mww/wwwwwf/ M ’
v
T|® © 0] [0 © "

T,
Concrete pad ~*

1.54 Convection ovens operate on the principle of inducing
forced convection inside the oven chamber with a fan.
A small cake is to be baked in an oven when the con-
vection feature is disabled. For this situation, the free
convection coefficient associated with the cake and its
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pan is h; = 3 W/m?-K. The oven air and wall are at
temperatures T,, = Ty, = 180°C. Determine the heat
flux delivered to the cake pan and cake batter when
they are initially inserted into the oven and are at a tem-
perature of 7, = 24°C. If the convection feature is acti-
vated, the forced convection heat transfer coefficient is
hyy = 27 W/m?- K. What is the heat flux at the batter or
pan surface when the oven is operated in the convection
mode? Assume a value of 0.97 for the emissivity of the
cake batter and pan.

1.55 Annealing, an important step in semiconductor materi-
als processing, can be accomplished by rapidly heating
the silicon wafer to a high temperature for a short
period of time. The schematic shows a method involv-
ing the use of a hot plate operating at an elevated tem-
perature T),. The wafer, initially at a temperature of T,
is suddenly positioned at a gap separation distance
L from the hot plate. The purpose of the analysis is to
compare the heat fluxes by conduction through the gas
within the gap and by radiation exchange between the
hot plate and the cool wafer. The initial time rate of
change in the temperature of the wafer, (d7,,/dt),, is also
of interest. Approximating the surfaces of the hot plate
and the wafer as blackbodies and assuming their diame-
ter D to be much larger than the spacing L, the radiative
heat flux may be expressed as ¢’ = o(T} — T?.
The silicon wafer has a thickness of d = 0.78 mm, a
density of 2700 kg/m®, and a specific heat of 875
J/kg-K. The thermal conductivity of the gas in the gap
is 0.0436 W/m* K.

/ Hot plate, 7,

P Stagnant gas, k

O 0 O 0O 0O O

+— Silicon wafer, T, ;

g

Gap, L
Positioner motion

f—
¢
[0}
[0}
[0}
O "
o |
-—> '-f’,—— 1—6-- — o)

(a) For T,=600°C and T,;=20°C, calculate the
radiative heat flux and the heat flux by conduction
across a gap distance of L = 0.2 mm. Also deter-
mine the value of (dT,/dt);, resulting from each of
the heating modes.

(b)| For gap distances of 0.2, 0.5, and 1.0 mm, determine
the heat fluxes and temperature-time change as a
function of the hot plate temperature for 300 =
T, = 1300°C. Display your results graphically.
Comment on the relative importance of the two heat

L=0.78 mm
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transfer modes and the effect of the gap distance on
the heating process. Under what conditions could a
wafer be heated to 900°C in less than 10 8?

1.56 In the thermal processing of semiconductor materials,
annealing is accomplished by heating a silicon wafer
according to a temperature-time recipe and then main-
taining a fixed elevated temperature for a prescribed
period of time. For the process tool arrangement shown
as follows, the wafer is in an evacuated chamber
whose walls are maintained at 27°C and within which
heating lamps maintain a radiant flux ¢} at its upper
surface. The wafer is 0.78 mm thick, has a thermal con-
ductivity of 30 W/m-K, and an emissivity that equals
its absorptivity to the radiant flux (¢ = a; = 0.65). For
¢! = 3.0 X 10° W/m?, the temperature on its lower sur-
face is measured by a radiation thermometer and found
to have a value of T,,, = 997°C.

Heating lamps Ty =27°C

e

q.'= 3 x 10° W/m?

v

f

——Wafer, k, &, ¢

T, ;=997°C

w, =

To avoid warping the wafer and inducing slip planes in
the crystal structure, the temperature difference across
the thickness of the wafer must be less than 2°C. Is this
condition being met?

1.57 A furnace for processing semiconductor materials is
formed by a silicon carbide chamber that is zone-heated
on the top section and cooled on the lower section. With
the elevator in the lowest position, a robot arm inserts the
silicon wafer on the mounting pins. In a production oper-
ation, the wafer is rapidly moved toward the hot zone to
achieve the temperature-time history required for the
process recipe. In this position, the top and bottom sur-
faces of the wafer exchange radiation with the hot and
cool zones, respectively, of the chamber. The zone
temperatures are 7, = 1500 K and 7, = 330 K, and the
emissivity and thickness of the wafer are & = 0.65 and
d = 0.78 mm, respectively. With the ambient gas at
T. =700 K, convection coefficients at the upper and
lower surfaces of the wafer are 8 and 4 W/m?- K, respec-
tively. The silicon wafer has a density of 2700 kg/m® and
a specific heat of 875 J/kg- K.
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!
(a) For an initial condition corresponding to a wafer
temperature of 7,,; = 300 K and the position of the
wafer shown schematically, determine the corre-
sponding time rate of change of the wafer temper-
ature, (dT,,/dt);.

Determine the steady-state temperature reached
by the wafer if it remains in this position. How
significant is convection heat transfer for this
situation? Sketch how you would expect the
wafer temperature to vary as a function of verti-
cal distance.

(b)

Single fuel cells such as the one of Example 1.5 can be
scaled up by arranging them into a fuel cell stack. A stack
consists of multiple electrolytic membranes that are
sandwiched between electrically conducting bipolar
plates. Air and hydrogen are fed to each membrane
through ow channels within each bipolar plate, as
shown in the sketch. With this stack arrangement, the
individual fuel cells are connected in series, electrically,
producing a stack voltage of E,,, = N X E_, where E, is
the voltage produced across each membrane and N is the
number of membranes in the stack. The electrical current
is the same for each membrane. The cell voltage, E., as
well as the cell efficiency, increases with temperature
(the air and hydrogen fed to the stack are humidified to
allow operation at temperatures greater than in Example
1.5), but the membranes will fail at temperatures exceed-
ing T=85°C. Consider L X w membranes, where
L = w = 100 mm, of thickness 7,, = 0.43 mm, that each
produce E.=0.6 V at I=60A, and E., =45W of

thermal energy when operating at 7 = 80°C. The exter-
nal surfaces of the stack are exposed to air at 7, = 25°C
and surroundings at T, = 30°C, with &= 0.88 and
h =150 W/m*-K.

1.59
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(a) Find the electrical power produced by a stack that
is Ly, = 200 mm long, for bipolar plate thickness
in the range 1 mm < £, < 10 mm. Determine the
total thermal energy generated by the stack.

(b) Calculate the surface temperature and explain
whether the stack needs to be internally heated or
cooled to operate at the optimal internal tempera-

ture of 80°C for various bipolar plate thicknesses.

(c) Identify how the internal stack operating tempera-
ture might be lowered or raised for a given bipolar
plate thickness, and discuss design changes that
would promote a more uniform temperature distrib-
ution within the stack. How would changes in the
external air and surroundings temperature affect
your answer? Which membrane in the stack is most

likely to fail due to high operating temperature?

Consider the wind turbine of Example 1.3. To reduce the
nacelle temperature to 7, = 30°C, the nacelle is vented
and a fan is installed to force ambient air into and out of
the nacelle enclosure. What is the minimum mass flow
rate of air required if the air temperature increases to the
nacelle surface temperature before exiting the nacelle?
The specific heat of air is 1007 J/kg- K.

Consider the conducting rod of Example 1.4 under

steady-state conditions. As suggested in Comment 3,
the temperature of the rod may be controlled by vary-
ing the speed of airflow over the rod, which, in turn,
alters the convection heat transfer coefficient. To con-
sider the effect of the convection coefficient, generate
plots of T versus [ for values of h = 50, 100, and
250 W/m?- K. Would variations in the surface emissiv-
ity have a significant effect on the rod temperature?
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A long bus bar (cylindrical rod used for making
electrical connections) of diameter D is installed in a
large conduit having a surface temperature of 30°C
and in which the ambient air temperature is 7, =
30°C. The electrical resistivity, p.(u{)-m), of the
bar material is a function of temperature, p,, = p,
[l +a(T—T,], where p,,= 00171 uQd*m, T, =
25°C, and @ = 0.00396 K~'. The bar experiences free
convection in the ambient air, and the convection
coefficient depends on the bar diameter, as well
as on the difference between the surface and ambient
temperatures. The governing relation is of the
form, h=CD *® (T — T,)"%, where C =121
W-m™!73- K% The emissivity of the bar surface is
e =0.85.

(a) Recognizing that the electrical resistance per unit
length of the bar is R, = p,/A., where A, is its
cross-sectional area, calculate the current-carrying
capacity of a 20-mm-diameter bus bar if its tem-
perature is not to exceed 65°C. Compare the rela-
tive importance of heat transfer by free convection
and radiation exchange.

(b) To assess the trade-off between current-carrying
capacity, operating temperature, and bar diameter,
for diameters of 10, 20, and 40 mm, plot the
bar temperature 7 as a function of current for
the range 100 =7 = 5000 A. Also plot the ratio
of the heat transfer by convection to the total heat
transfer.

A small sphere of reference-grade iron with a specific
heat of 447 J/kg- K and a mass of 0.515 kg is suddenly
immersed in a water—ice mixture. Fine thermocouple
wires suspend the sphere, and the temperature is
observed to change from 15 to 14°C in 6.35s. The
experiment is repeated with a metallic sphere of the
same diameter, but of unknown composition with a
mass of 1.263 kg. If the same observed temperature
change occurs in 4.59 s, what is the specific heat of the
unknown material?

A 50mm X 45 mm X 20 mm cell phone charger
has a surface temperature of 7, = 33°C when plugged
into an electrical wall outlet but not in use. The
surface of the charger is of emissivity € = 0.92 and is
subject to a free convection heat transfer coefficient
of h = 4.5 W/m*-K. The room air and wall tempera-
tures are T, = 22°C and T, = 20°C, respectively.
If electricity costs C = $0.18/kW-h, determine the
daily cost of leaving the charger plugged in when not
in use.

¢,= 510 ke

Wall
Charger

1.64 A spherical, stainless steel (AISI 302) canister is used to

store reacting chemicals that provide for a uniform heat
flux ¢i to its inner surface. The canister is suddenly sub-
merged in a liquid bath of temperature 7., < T}, where T;
is the initial temperature of the canister wall.

Canister Reacting chemicals
r,=0.6 m
7,= 500 K TT 7. =300 K
p = 8055 kg/m? h =500 W/m?K

Bath

r,=0.5m

(a) Assuming negligible temperature gradients in the
canister wall and a constant heat flux ¢}, develop an
equation that governs the variation of the wall tem-
perature with time during the transient process.
What is the initial rate of change of the wall tem-

"

perature if ¢/ = 10° W/m?*?
(b) What is the steady-state temperature of the wall?

m The convection coefficient depends on the velocity
associated with fluid flow over the canister and
whether the wall temperature is large enough to
induce boiling in the liquid. Compute and plot the
steady-state temperature as a function of & for
the range 100 < h = 10,000 W/m?-K. Is there a
value of h below which operation would be
unacceptable?

1.65 A freezer compartment is covered with a 2-mm-thick

layer of frost at the time it malfunctions. If the
compartment is in ambient air at 20°C and a coefficient
of h = 2 W/m*-K characterizes heat transfer by natural
convection from the exposed surface of the layer, esti-
mate the time required to completely melt the frost.
The frost may be assumed to have a mass density of
700 kg/m® and a latent heat of fusion of 334 kJ/kg.
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A vertical slab of Wood’s metal is joined to a substrate on
one surface and is melted as it is uniformly irradiated by a
laser source on the opposite surface. The metal is initially
at its fusion temperature of 7; = 72°C, and the melt runs
off by gravity as soon as it is formed. The absorptivity of
the metal to the laser radiation is «; = 0.4, and its latent
heat of fusion is h,= 33 kl/kg.

(a) Neglecting heat transfer from the irradiated surface
by convection or radiation exchange with the
surroundings, determine the instantaneous rate of
melting in kg/s - m? if the laser irradiation is 5 kW/m?.
How much material is removed if irradiation is main-
tained for a period of 2 s?

(b

=

Allowing for convection to ambient air, with
T.,=20°C and h=15W/m*-K, and radiation
exchange with large surroundings (e = 0.4,
T = 20°C), determine the instantaneous rate of
melting during irradiation.

A photovoltaic panel of dimension 2m X 4m is
installed on the roof of a home. The panel is irradiated
with a solar flux of Gy = 700 W/m?, oriented normal to
the top panel surface. The absorptivity of the panel to the
solar irradiation is ag = 0.83, and the efficiency of con-
version of the absorbed flux to electrical power is
n = PlagGgA = 0.553 — 0.001 K"Tp, where T, is the
panel temperature expressed in kelvins and A is the solar
panel area. Determine the electrical power generated for
(a) a still summer day, in which T, = T, = 35°C,
h =10 W/m?-K, and (b) a breezy winter day, for which
Ty = T., = —15°C, h = 30 W/m?-K. The panel emis-
sivity is & = 0.90.

1.68
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Photovoltaic panel, T,

Following the hot vacuum forming of a paper-pulp
mixture, the product, an egg carton, is transported on a
conveyor for 18 s toward the entrance of a gas-fired
oven where it is dried to a desired final water content.
Very little water evaporates during the travel time.
So, to increase the productivity of the line, it is pro-
posed that a bank of infrared radiation heaters, which
provide a uniform radiant flux of 5000 W/m?% be
installed over the conveyor. The carton has an exposed
area of 0.0625 m?> and a mass of 0.220 kg, 75% of
which is water after the forming process.

Carton

Bank of infrared radiant heaters
I 1 i | J 1 Gas-fired
\%\ furnace

| — N —
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The chief engineer of your plant will approve the pur-
chase of the heaters if they can reduce the water content
by 10% of the total mass. Would you recommend the
purchase? Assume the heat of vaporization of water is
hy, = 2400 kJ/kg.

Electronic power devices are mounted to a heat sink hav-
ing an exposed surface area of 0.045 m” and an emissiv-
ity of 0.80. When the devices dissipate a total power of
20 W and the air and surroundings are at 27°C, the aver-
age sink temperature is 42°C. What average temperature
will the heat sink reach when the devices dissipate 30 W
for the same environmental condition?

Power device

T, =27°C

Heat sink, T
A, €
Air

T.=27C
A computer consists of an array of five printed circuit
boards (PCBs), each dissipating P, = 20 W of power.
Cooling of the electronic components on a board is pro-
vided by the forced flow of air, equally distributed in
passages formed by adjoining boards, and the convec-
tion coefficient associated with heat transfer from the
components to the air is approximately 2 = 200 W/m?>* K.
Air enters the computer console at a temperature of
T, = 20°C, and flow is driven by a fan whose power
consumption is Py = 25 W.

Outlet air V T,

AN
P
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1E1 f 1%1
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Inlet air v T;

Fan, Pf
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(a) If the temperature rise of the airflow, (7, — T}), is not
to exceed 15°C, what is the minimum allowable volu-
metric flow rate V of the air? The density and specific
heat of the air may be approximated as p = 1.161
kg/m® and ¢, = 1007 J/kg- K, respectively.

(b) The component that is most susceptible to thermal
failure dissipates 1 W/cm? of surface area. To mini-
mize the potential for thermal failure, where should
the component be installed on a PCB? What is its
surface temperature at this location?

Consider a surface-mount type transistor on a circuit
board whose temperature is maintained at 35°C. Air at
20°C flows over the upper surface of dimensions 4 mm X
8 mm with a convection coefficient of 50 W/m? K. Three
wire leads, each of cross section 1 mm X 0.25 mm and
length 4 mm, conduct heat from the case to the circuit
board. The gap between the case and the board is 0.2 mm.

Transistor
case

Circuit
board

(a) Assuming the case is isothermal and neglecting radia-
tion, estimate the case temperature when 150 mW is
dissipated by the transistor and (i) stagnant air or (ii) a
conductive paste fills the gap. The thermal conductiv-
ities of the wire leads, air, and conductive paste are
25, 0.0263, and 0.12 W/m* K, respectively.

(b) |Using the conductive paste to fill the gap, we wish to
determine the extent to which increased heat dissipa-
tion may be accommodated, subject to the constraint
that the case temperature not exceed 40°C. Options
include increasing the air speed to achieve a larger
convection coefficient & and/or changing the lead
wire material to one of larger thermal conductivity.
Independently considering leads fabricated from
materials with thermal conductivities of 200 and
400 W/m-K, compute and plot the maximum allow-
able heat dissipation for variations in A over the
range 50 < h = 250 W/m>-K.

The roof of a car in a parking lot absorbs a solar radiant
flux of 800 W/m?, and the underside is perfectly insu-
lated. The convection coefficient between the roof and
the ambient air is 12 W/m?- K.

(a) Neglecting radiation exchange with the surroundings,
calculate the temperature of the roof under steady-
state conditions if the ambient air temperature is 20°C.
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(b) For the same ambient air temperature, calculate
the temperature of the roof if its surface emissivity
is 0.8.

m The convection coefficient depends on airflow condi-
tions over the roof, increasing with increasing air
speed. Compute and plot the roof temperature as a
function of / for 2 < h = 200 W/m?- K.

1.73 Consider the conditions of Problem 1.22, but the sur-

roundings temperature is 25°C and radiation exchange
with the surroundings is not negligible. If the convec-
tion coefficient is 6.4 W/m*+K and the emissivity of the
plate is & = 0.42, determine the time rate of change of
the plate temperature, d7/dt, when the plate temperature
is 225°C. Evaluate the heat loss by convection and the
heat loss by radiation.

1.74 Most of the energy we consume as food is converted to

thermal energy in the process of performing all our bodily
functions and is ultimately lost as heat from our bodies.
Consider a person who consumes 2100 kcal per day (note
that what are commonly referred to as food calories are
actually kilocalories), of which 2000 kcal is converted to
thermal energy. (The remaining 100 kcal is used to do
work on the environment.) The person has a surface area
of 1.8 m? and is dressed in a bathing suit.

(a) The person is in a room at 20°C, with a convection
heat transfer coefficient of 3 W/m?-K. At this air
temperature, the person is not perspiring much.
Estimate the person’s average skin temperature.

(b) If the temperature of the environment were 33°C,
what rate of perspiration would be needed to main-
tain a comfortable skin temperature of 33°C?

1.75 Consider Problem 1.1.

(a) If the exposed cold surface of the insulation is at
T, = 20°C, what is the value of the convection heat
transfer coefficient on the cold side of the insulation
if the surroundings temperature is 7, = 320 K, the
ambient temperature is T, = 5°C, and the emissiv-
ity is € = 0.95? Express your results in units of
W/m?:K and W/m?-°C.

Using the convective heat transfer coefficient you
calculated in part (a), determine the surface tempera-
ture, 7,, as the emissivity of the surface is varied
over the range 0.05 = & = 0.95. The hot wall tem-
perature of the insulation remains fixed at 7, = 30°C.
Display your results graphically.

1.76 The wall of an oven used to cure plastic parts is of

thickness L = 0.05 m and is exposed to large surround-
ings and air at its outer surface. The air and the sur-
roundings are at 300 K.

(a) If the temperature of the outer surface is 400 K
and its convection coefficient and emissivity are
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h =20 W/m?+K and & = 0.8, respectively, what is
the temperature of the inner surface if the wall has a
thermal conductivity of k = 0.7 W/m?-K?

Consider conditions for which the temperature of the
inner surface is maintained at 600 K, while the air
and large surroundings to which the outer surface is
exposed are maintained at 300 K. Explore the effects
of variations in k, &, and & on (i) the temperature of
the outer surface, (ii) the heat flux through the wall,
and (iii) the heat fluxes associated with convection
and radiation heat transfer from the outer surface.
Specifically, compute and plot the foregoing depen-
dent variables for parametric variations about base-
line conditions of k = 10 W/m-K, h = 20 W/m>- K,
and &£ = 0.5. The suggested ranges of the indepen-
dent variables are 0.1 = k=400 Wm-K,2=h =
200 W/m? K, and 0.05 < & =< 1. Discuss the physi-
cal implications of your results. Under what condi-
tions will the temperature of the outer surface be less
than 45°C, which is a reasonable upper limit to avoid
burn injuries if contact is made?

1.77 An experiment to determine the convection coefficient
associated with airflow over the surface of a thick
stainless steel casting involves the insertion of thermo-
couples into the casting at distances of 10 and 20 mm
from the surface along a hypothetical line normal to the
surface. The steel has a thermal conductivity of
15 W/m- K. If the thermocouples measure temperatures
of 50 and 40°C in the steel when the air temperature is
100°C, what is the convection coefficient?

1.78 A thin electrical heating element provides a uniform
heat flux ¢/, to the outer surface of a duct through which
airflows. The duct wall has a thickness of 10 mm and a
thermal conductivity of 20 W/m-K.

Duct

Air
— E —
\\_/
—
Air

T 7
Duct wall
Tl)

TR — Electrical

1 ~7  heater

Insulation

(a) At a particular location, the air temperature is 30°C
and the convection heat transfer coefficient
between the air and inner surface of the duct is
100 W/m?-K. What heat flux ¢/ is required to
maintain the inner surface of the duct at T; = 85°C?

(b) For the conditions of part (a), what is the tempera-
ture (7,) of the duct surface next to the heater?

(c) |[With T; = 85°C, compute and plot ¢ and T, as a
function of the air-side convection coefficient & for
the range 10 < & =< 200 W/m?-K. Briefly discuss
your results.

1.79 A rectangular forced air heating duct is suspended from
the ceiling of a basement whose air and walls are at a
temperature of T,, = Ty, = 5°C. The duct is 15 m long,
and its cross section is 350 mm X 200 mm.

(a) For an uninsulated duct whose average surface tem-
perature is 50°C, estimate the rate of heat loss from
the duct. The surface emissivity and convection
coefficient are approximately 0.5 and 4 W/m?-K,
respectively.

(b) If heated air enters the duct at 58°C and a velocity of
4 m/s and the heat loss corresponds to the result of
part (a), what is the outlet temperature? The density
and specific heat of the air may be assumed to be
p = 1.10 kg/m® and ¢, = 1008 J/kg- K, respectively.

1.80 Consider the steam pipe of Example 1.2. The facilities
manager wants you to recommend methods for reduc-
ing the heat loss to the room, and two options are pro-
posed. The first option would restrict air movement
around the outer surface of the pipe and thereby reduce
the convection coefficient by a factor of two. The sec-
ond option would coat the outer surface of the pipe with
a low emissivity (¢ = 0.4) paint.

(a) Which of the foregoing options would you
recommend?

(b) | To prepare for a presentation of your recommenda-
tion to management, generate a graph of the heat
loss ¢’ as a function of the convection coefficient
for 2=<h =20 W/m?-K and emissivities of 0.2,
0.4, and 0.8. Comment on the relative efficacy of
reducing heat losses associated with convection and
radiation.

1.81 During its manufacture, plate glass at 600°C is cooled
by passing air over its surface such that the convection
heat transfer coefficient is 7 = 5 W/m?-K. To prevent
cracking, it is known that the temperature gradient must
not exceed 15°C/mm at any point in the glass during the
cooling process. If the thermal conductivity of the glass
is 1.4 W/m- K and its surface emissivity is 0.8, what is
the lowest temperature of the air that can initially be
used for the cooling? Assume that the temperature of
the air equals that of the surroundings.

1.82 The curing process of Example 1.9 involves exposure
of the plate to irradiation from an infrared lamp and
attendant cooling by convection and radiation exchange
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with the surroundings. Alternatively, in lieu of the
lamp, heating may be achieved by inserting the plate in
an oven whose walls (the surroundings) are maintained
at an elevated temperature.

(a) Consider conditions for which the oven walls are
at 200°C, airflow over the plate is characterized by
T., = 20°C and & = 15 W/m*-K, and the coating
has an emissivity of & = 0.5. What is the tempera-
ture of the plate?

(b) | For ambient air temperatures of 20, 40, and 60°C,
determine the plate temperature as a function of the
oven wall temperature over the range from 150 to
250°C. Plot your results, and identify conditions for
which acceptable curing temperatures between 100
and 110°C may be maintained.

1.83 The diameter and surface emissivity of an electrically

heated plate are D = 300 mm and ¢ = 0.80, respectively.

(a) Estimate the power needed to maintain a surface
temperature of 200°C in a room for which the air
and the walls are at 25°C. The coefficient character-
izing heat transfer by natural convection depends
on the surface temperature and, in units of
W/m?-K, may be approximated by an expression of
the form 7 = 0.80(T, — T.,)"".

(b)| Assess the effect of surface temperature on the
power requirement, as well as on the relative con-
tributions of convection and radiation to heat trans-
fer from the surface.

1.84 Bus bars proposed for use in a power transmission

station have a rectangular cross section of height
H = 600 mm and width W = 200 mm. The electrical
resistivity, p,(u{)+m), of the bar material is a function
of temperature, p, = p, [l + «(T — T,)], where p, , =
0.0828 wQ-m, T, = 25°C, and a = 0.0040 K~'. The
emissivity of the bar’s painted surface is 0.8, and
the temperature of the surroundings is 30°C. The con-
vection coefficient between the bar and the ambient air
at 30°C is 10 W/m? - K.

(a) Assuming the bar has a uniform temperature 7,
calculate the steady-state temperature when a cur-
rent of 60,000 A passes through the bar.

Compute and plot the steady-state temperature of
the bar as a function of the convection coefficient
for 10 <h =100 W/m?-K. What minimum
convection coefficient is required to maintain a
safe-operating temperature below 120°C? Will
increasing the emissivity significantly affect this
result?
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1.85 A solar flux of 700 W/m? is incident on a flat-plate solar

collector used to heat water. The area of the collector
is 3 m?, and 90% of the solar radiation passes through
the cover glass and is absorbed by the absorber
plate. The remaining 10% is reflected away from the
collector. Water flows through the tube passages on
the back side of the absorber plate and is heated from
an inlet temperature 7; to an outlet temperature 7,. The
cover glass, operating at a temperature of 30°C, has
an emissivity of 0.94 and experiences radiation
exchange with the sky at —10°C. The convection coef-
ficient between the cover glass and the ambient air at
25°C is 10 W/m*- K.

/ ,—A Cover glass
p—
; # Air space

Absorber plate
Water tubing

Insulation

(a) Perform an overall energy balance on the collector
to obtain an expression for the rate at which useful
heat is collected per unit area of the collector, ¢
Determine the value of ¢,

(b) Calculate the temperature rise of the water, 7, — T,
if the flow rate is 0.01 kg/s. Assume the specific
heat of the water to be 4179 J/kg-K.

(c) The collector efficiency m is defined as the ratio of
the useful heat collected to the rate at which solar
energy is incident on the collector. What is the
value of 1?

Process Identification

1.86 In analyzing the performance of a thermal system, the

engineer must be able to identify the relevant heat
transfer processes. Only then can the system behavior
be properly quantified. For the following systems, iden-
tify the pertinent processes, designating them by appro-
priately labeled arrows on a sketch of the system.
Answer additional questions that appear in the problem
statement.

(a) Identify the heat transfer processes that determine
the temperature of an asphalt pavement on a sum-
mer day. Write an energy balance for the surface of
the pavement.
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(b) Microwave radiation is known to be transmitted by

©

plastics, glass, and ceramics but to be absorbed
by materials having polar molecules such as water.
Water molecules exposed to microwave radiation
align and reverse alignment with the microwave
radiation at frequencies up to 10° s~!, causing heat
to be generated. Contrast cooking in a microwave
oven with cooking in a conventional radiant or
convection oven. In each case, what is the physical
mechanism responsible for heating the food?
Which oven has the greater energy utilization
efficiency? Why? Microwave heating is being con-
sidered for drying clothes. How would the opera-
tion of a microwave clothes dryer differ from a
conventional dryer? Which is likely to have the
greater energy utilization efficiency? Why?

To prevent freezing of the liquid water inside the
fuel cell of an automobile, the water is drained to
an onboard storage tank when the automobile is not
in use. (The water is transferred from the tank back to
the fuel cell when the automobile is turned on.) Con-
sider a fuel cell-powered automobile that is parked
outside on a very cold evening with 7, = —20°C.
The storage tank is initially empty at 7;, = —20°C,
when liquid water, at atmospheric pressure and tem-
perature T;,, = 50°C, is introduced into the tank. The
tank has a wall thickness #, and is blanketed with
insulation of thickness 7. Identify the heat transfer
processes that will promote freezing of the water.
Will the likelihood of freezing change as the insula-
tion thickness is modified? Will the likelihood of
freezing depend on the tank wall’s thickness and
material? Would freezing of the water be more likely
if plastic (low thermal conductivity) or stainless steel
(moderate thermal conductivity) tubing is used to
transfer the water to and from the tank? Is there an
optimal tank shape that would minimize the probabil-
ity of the water freezing? Would freezing be more
likely or less likely to occur if a thin sheet of alu-
minum foil (high thermal conductivity, low emissiv-
ity) is applied to the outside of the insulation?

To fu?l cell

Transfer

(d) Your grandmother is concerned about reducing

her winter heating bills. Her strategy is to loosely
fit rigid polystyrene sheets of insulation over her
double-pane windows right after the first freezing
weather arrives in the autumn. Identify the relevant
heat transfer processes on a cold winter night when
the foamed insulation sheet is placed (i) on the
inner surface and (ii) on the outer surface of her
window. To avoid condensation damage, which
configuration is preferred? Condensation on the
window pane does not occur when the foamed
insulation is not in place.

Cold, dry
night air

Warm, moist
room air

Exterior pane

Airgap ——— 1.

Interior pane

Insulation

Insulation on inner surface

Cold, dry
night air

Warm, moist
room air

Exterior pane

Air gap

Interior pane

Insulation

Insulation on outer surface

(e) There is considerable interest in developing building

materials with improved insulating qualities. The
development of such materials would do much to
enhance energy conservation by reducing space heat-
ing requirements. It has been suggested that superior
structural and insulating qualities could be obtained
by using the composite shown. The material consists
of a honeycomb, with cells of square cross section,
sandwiched between solid slabs. The cells are filled
with air, and the slabs, as well as the honeycomb
matrix, are fabricated from plastics of low thermal
conductivity. For heat transfer normal to the slabs,
identify all heat transfer processes pertinent to the
performance of the composite. Suggest ways in
which this performance could be enhanced.



®)

m Problems

Surface
slabs

Cellular
air spaces

A thermocouple junction (bead) is used to measure
the temperature of a hot gas stream flowing through a
channel by inserting the junction into the mainstream
of the gas. The surface of the channel is cooled such
that its temperature is well below that of the gas.
Identify the heat transfer processes associated with
the junction surface. Will the junction sense a tem-
perature that is less than, equal to, or greater than the
gas temperature? A radiation shield is a small, open-
ended tube that encloses the thermocouple junction,
yet allows for passage of the gas through the tube.
How does use of such a shield improve the accuracy
of the temperature measurement?

Hot
gases

(2)

I—Cool channel
Shield

a

Thermocouple

— > bead

A double-glazed, glass fire screen is inserted
between a wood-burning fireplace and the interior
of a room. The screen consists of two vertical glass
plates that are separated by a space through which
room air may flow (the space is open at the top and
bottom). Identify the heat transfer processes associ-
ated with the fire screen.

Air channel

T Glass plate
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(h) A thermocouple junction is used to measure the tem-

perature of a solid material. The junction is inserted
into a small circular hole and is held in place by
epoxy. Identify the heat transfer processes associated
with the junction. Will the junction sense a tempera-
ture less than, equal to, or greater than the solid tem-
perature? How will the thermal conductivity of the
epoxy affect the junction temperature?

= Hot solid

Thermocouple

bead
% Q Cool
M D) gases
\ Epoxy

1.87 In considering the following problems involving heat
transfer in the natural environment (outdoors), recognize
that solar radiation is comprised of long and short wave-
length components. If this radiation is incident on a semi-
transparent medium, such as water or glass, two things
will happen to the nonreflected portion of the radiation.
The long wavelength component will be absorbed at the
surface of the medium, whereas the short wavelength
component will be transmitted by the surface.

(@)

(b)

The number of panes in a window can strongly influ-
ence the heat loss from a heated room to the outside
ambient air. Compare the single- and double-paned
units shown by identifying relevant heat transfer
processes for each case.

Double
pane

a

Ambient
air

In a typical flat-plate solar collector, energy is col-
lected by a working fluid that is circulated through
tubes that are in good contact with the back face of
an absorber plate. The back face is insulated from
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the surroundings, and the absorber plate receives
solar radiation on its front face, which is typically
covered by one or more transparent plates. Identify
the relevant heat transfer processes, first for the
absorber plate with no cover plate and then for
the absorber plate with a single cover plate.

The solar energy collector design shown in the
schematic has been used for agricultural applica-
tions. Air is blown through a long duct whose
cross section is in the form of an equilateral trian-
gle. One side of the triangle is comprised of a
double-paned, semitransparent cover; the other
two sides are constructed from aluminum sheets
painted flat black on the inside and covered on the
outside with a layer of styrofoam insulation. Dur-
ing sunny periods, air entering the system is heated
for delivery to either a greenhouse, grain drying
unit, or storage system.

My

Double-
paned
cover

/ Styrofoam

Absorber

Identify all heat transfer processes associated with the
cover plates, the absorber plate(s), and the air.

(d) Evacuated-tube solar collectors are capable of

Solar
radiation

Evacuated
tubes

Reflecting
panel

improved performance relative to flat-plate collec-
tors. The design consists of an inner tube enclosed
in an outer tube that is transparent to solar radia-
tion. The annular space between the tubes is evacu-
ated. The outer, opaque surface of the inner tube
absorbs solar radiation, and a working fluid is
passed through the tube to collect the solar energy.
The collector design generally consists of a row of
such tubes arranged in front of a reflecting panel.
Identify all heat transfer processes relevant to the
performance of this device.

;P
©©© O 0N

Working
fluid

Transparent
outer tube

@)

Evacuated
space

Inner
tube
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Recall that conduction is the transport of energy in a medium due to a temperature gradi-
ent, and the physical mechanism is one of random atomic or molecular activity. In Chapter 1
we learned that conduction heat transfer is governed by Fouriers law and that use of the
law to determine the heat flux depends on knowledge of the manner in which temperature
varies within the medium (the femperature distribution). By way of introduction, we
restricted our attention to simplified conditions (one-dimensional, steady-state conduction
in a plane wall). However, Fourier’s law is applicable to transient, multidimensional con-
duction in complex geometries.

The objectives of this chapter are twofold. First, we wish to develop a deeper understand-
ing of Fourier’s law. What are its origins? What form does it take for different geometries?
How does its proportionality constant (the thermal conductivity) depend on the physical
nature of the medium? Our second objective is to develop, from basic principles, the general
equation, termed the heat equation, which governs the temperature distribution in a medium.
The solution to this equation provides knowledge of the temperature distribution, which may
then be used with Fourier’s law to determine the heat flux.

2.1 The Conduction Rate Equation

Although the conduction rate equation, Fourier’s law, was introduced in Section 1.2, it
is now appropriate to consider its origin. Fourier’s law is phenomenological; that is, it is
developed from observed phenomena rather than being derived from first principles. Hence,
we view the rate equation as a generalization based on much experimental evidence. For
example, consider the steady-state conduction experiment of Figure 2.1. A cylindrical rod of
known material is insulated on its lateral surface, while its end faces are maintained at differ-
ent temperatures, with 7, > T,. The temperature difference causes conduction heat transfer
in the positive x-direction. We are able to measure the heat transfer rate ¢,, and we seek to
determine how ¢, depends on the following variables: AT, the temperature difference; Ax,
the rod length; and A, the cross-sectional area.

We might imagine first holding AT and Ax constant and varying A. If we do so, we find
that ¢, is directly proportional to A. Similarly, holding AT and A constant, we observe that
g, varies inversely with Ax. Finally, holding A and Ax constant, we find that ¢, is directly
proportional to AT. The collective effect is then

AT
Ai
4 Ax

In changing the material (e.g., from a metal to a plastic), we would find that this proportion-
ality remains valid. However, we would also find that, for equal values of A, Ax, and AT,

AT=T,-T,
1
> ge—> |
: \ :

L« Ax ‘1
L—NC FIGURE 2.1  Steady-state heat conduction experiment.
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the value of g, would be smaller for the plastic than for the metal. This suggests that the
proportionality may be converted to an equality by introducing a coefficient that is a measure
of the material behavior. Hence, we write

= AT
qx Ax

where k, the thermal conductivity (W/m+K) is an important property of the material. Evalu-
ating this expression in the limit as Ax — 0, we obtain for the heat rate

dT
= —kA=— 2.1
S dx @D
or for the heat ux
" qx dT
= g — _p @i 2.2
% A dx (2:2)

Recall that the minus sign is necessary because heat is always transferred in the direction of
decreasing temperature.

Fourier’s law, as written in Equation 2.2, implies that the heat flux is a directional quan-
tity. In particular, the direction of ¢! is normal to the cross-sectional area A. Or, more
generally, the direction of heat flow will always be normal to a surface of constant tempera-
ture, called an isothermal surface. Figure 2.2 illustrates the direction of heat flow ¢ in a plane
wall for which the temperature gradient dT/dx is negative. From Equation 2.2, it follows that
q. is positive. Note that the isothermal surfaces are planes normal to the x-direction.

Recognizing that the heat flux is a vector quantity, we can write a more general state-
ment of the conduction rate equation (Fouriers$ law ) as follows:

OT aT> 53

no_ - _ ﬂ bl il
q'= —kVT k(’&x+J&y+k&z

where V is the three-dimensional del operator and 7(x, y, z) is the scalar temperature field.
It is implicit in Equation 2.3 that the heat flux vector is in a direction perpendicular to the
isothermal surfaces. An alternative form of Fourier’s law is therefore

"o My ﬂ
q' =q,n k on n 2.4)
T(x)

T, \
\ qy
TZ

FiGURE 2.2 The relationship between coordinate system, heat flow
x  direction, and temperature gradient in one dimension.
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y
|sotherm I FIGURE 2.3  The heat flux vector normal to an isotherm in a
v two-dimensional coordinate system.

where ¢, is the heat flux in a direction n, which is normal to an isotherm, and n is the unit
normal vector in that direction. This is illustrated for the two-dimensional case in Figure 2.3.
The heat transfer is sustained by a temperature gradient along n. Note also that the heat flux
vector can be resolved into components such that, in Cartesian coordinates, the general
expression for ¢" is

q' =i +jq, + kq 2.5)

where, from Equation 2.3, it follows that

_ _,dT v _ _ 9T v _ 0T
= kg = kG @l= kg (2.6)

"

X
Each of these expressions relates the heat flux across a surface to the temperature gradient
in a direction perpendicular to the surface. It is also implicit in Equation 2.3 that the
medium in which the conduction occurs is isotropic. For such a medium, the value of
the thermal conductivity is independent of the coordinate direction.

Fourier’s law is the cornerstone of conduction heat transfer, and its key features are
summarized as follows. It is not an expression that may be derived from first principles; it
is instead a generalization based on experimental evidence. It is an expression that denes
an important material property, the thermal conductivity. In addition, Fourier’s law is a
vector expression indicating that the heat flux is normal to an isotherm and in the direction
of decreasing temperature. Finally, note that Fourier’s law applies for all matter, regardless of
its state (solid, liquid, or gas).

2.2 The Thermal Properties of Matter

To use Fourier’s law, the thermal conductivity of the material must be known. This property,
which is referred to as a transport property, provides an indication of the rate at which energy is
transferred by the diffusion process. It depends on the physical structure of matter, atomic and
molecular, which is related to the state of the matter. In this section we consider various forms
of matter, identifying important aspects of their behavior and presenting typical property values.

2.2.1 Thermal Conductivity

From Fourier’s law, Equation 2.6, the thermal conductivity associated with conduction in
the x-direction is defined as

__ 4
Y (9Tlox)
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Similar definitions are associated with thermal conductivities in the y- and z-directions
(ky, k), but for an isotropic material the thermal conductivity is independent of the direction
of transfer, k, = k, = k, = k.

From the foregoing equation, it follows that, for a prescribed temperature gradient, the
conduction heat flux increases with increasing thermal conductivity. In general, the thermal
conductivity of a solid is larger than that of a liquid, which is larger than that of a gas. As
illustrated in Figure 2.4, the thermal conductivity of a solid may be more than four orders
of magnitude larger than that of a gas. This trend is due largely to differences in intermole-
cular spacing for the two states.

The Solid State 1In the modern view of materials, a solid may be comprised of free
electrons and atoms bound in a periodic arrangement called the lattice. Accordingly, trans-
port of thermal energy may be due to two effects: the migration of free electrons and
lattice vibrational waves. When viewed as a particle-like phenomenon, the lattice vibration
quanta are termed phonons. In pure metals, the electron contribution to conduction heat
transfer dominates, whereas in nonconductors and semiconductors, the phonon contribution
is dominant.
Kinetic theory yields the following expression for the thermal conductivity [1]:

k=LCenn, 2.7

W

For conducting materials such as metals, C = C, is the electron specific heat per unit vol-
ume, ¢ is the mean electron velocity, and A5, = A, is the electron mean free path, which is
defined as the average distance traveled by an electron before it collides with either an
imperfection in the material or with a phonon. In nonconducting solids, C = C, is the
phonon specific heat, ¢ is the average speed of sound, and A4 = A, is the phonon mean
free path, which again is determined by collisions with imperfections or other phonons. In
all cases, the thermal conductivity increases as the mean free path of the energy carriers
(electrons or phonons) is increased.

Zinc Silver
PURE METALS
Nickel Aluminum
ALLOYS
Plastics Ice Oxides
NONMETALLIC SOLIDS
Foams Fibers
INSULATION SYSTEMS
Oils Water Mercury
Carbon LIQUIDS
dioxide Hydrogen
GASES

FIGURE 2.4 Range of thermal
0.01 0.1 1 10 100 1000 conductivity for various states of matter
Thermal conductivity (W/m-K) at normal temperatures and pressure.
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When electrons and phonons carry thermal energy leading to conduction heat transfer
in a solid, the thermal conductivity may be expressed as

k= k, + ki 2.8)

To a first approximation, k, is inversely proportional to the electrical resistivity, p,. For pure
metals, which are of low p,, k, is much larger than k. In contrast, for alloys, which are of
substantially larger p,, the contribution of k, to k is no longer negligible. For nonmetallic
solids, k is determined primarily by k,, which increases as the frequency of interactions
between the atoms and the lattice decreases. The regularity of the lattice arrangement has an
important effect on k;,, with crystalline (well-ordered) materials like quartz having a higher
thermal conductivity than amorphous materials like glass. In fact, for crystalline, nonmetal-
lic solids such as diamond and beryllium oxide, k,, can be quite large, exceeding values of k
associated with good conductors, such as aluminum.

The temperature dependence of & is shown in Figure 2.5 for representative metallic and
nonmetallic solids. Values for selected materials of technical importance are also provided
in Table A.1 (metallic solids) and Tables A.2 and A.3 (nonmetallic solids). More detailed
treatments of thermal conductivity are available in the literature [2].

The Solid State: Micro- and Nanoscale Effects In the preceding discussion, the bulk ther-
mal conductivity is described, and the thermal conductivity values listed in Tables A.1 through
A.3 are appropriate for use when the physical dimensions of the material of interest are rela-
tively large. This is the case in many commonplace engineering problems. However, in several
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Figure 2.5 The temperature
100 300 500 1000 2000 4000 dependence of the thermal conductivity
Temperature (K) of selected solids.
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areas of technology, such as microelectronics, the material’s characteristic dimensions can be
on the order of micrometers or nanometers, in which case care must be taken to account for the
possible modifications of k that can occur as the physical dimensions become small.

Cross sections of /ms of the same material having thicknesses L, and L, are shown in
Figure 2.6. Electrons or phonons that are associated with conduction of thermal energy are
also shown qualitatively. Note that the physical boundaries of the film act to scatter the
energy carriers and redirect their propagation. For large L/)\mfp1 (Figure 2.6a), the effect of
the boundaries on reducing the average energy carrier path length is minor, and conduction
heat transfer occurs as described for bulk materials. However, as the film becomes thinner,
the physical boundaries of the material can decrease the average net distance traveled by the
energy carriers, as shown in Figure 2.6b. Moreover, electrons and phonons moving in
the thin x-direction (representing conduction in the x-direction) are affected by the boundaries
to a more significant degree than energy carriers moving in the y-direction. As such, for films
characterized by small L/A ¢, we find that k, < k, <k, where k is the bulk thermal conduc-
tivity of the film material.

For L/A,q, = 1, the predicted values of k, and k, may be estimated to within 20% from
the following expression [1]:

k /\mfp

T=1—-— 2.

k 3L (2.92)
k, 2 gy

—=1- 2.9b
k 3L ( )

Equations 2.9a, b reveal that the values of k, and k, are within approximately 5% of the bulk
thermal conductivity if L/A 4, > 7 (for k,) and L/A ., > 4.5 (for k). Values of the mean free
path as well as critical film thicknesses below which microscale effects must be considered,
L, are included in Table 2.1 for several materials at 7=~ 300K. For films with
Amep < L < Ly, k, and k, are reduced from the bulk value as indicated in Equations 2.9a,b.

5% b >
%7 o o
% »

.00 ¢.0 o
o 179

o’%_?\ 5

o \OL °‘> O/ L FIGURE 2.6  Electron or phonon trajectories in

(a) a relatively thick film and (b) a relatively thin
(@) (b) film with boundary effects.

L,<L,

'"The quantity Ang/L is a dimensionless parameter known as the Knudsen number. Large Knudsen numbers
(small L/A ) suggest potentially significant nano- or microscale effects.
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No general guidelines exist for predicting values of the thermal conductivities for
L/A s, < 1. Note that, in solids, the value of A, decreases as the temperature increases.

In addition to scattering from physical boundaries, as in the case of Figure 2.6b, energy
carriers may be redirected by chemical dopants embedded within a material or by grain
boundaries that separate individual clusters of material in otherwise homogeneous matter.
Nanostructured materials are chemically identical to their conventional counterparts but
are processed to provide very small grain sizes. This feature impacts heat transfer by
increasing the scattering and reflection of energy carriers at grain boundaries.

Measured values of the thermal conductivity of a bulk, nanostructured yttria-stabilized
zirconia material are shown in Figure 2.7. This particular ceramic is widely used for insulation
purposes in high-temperature combustion devices. Conduction is dominated by phonon trans-
fer, and the mean free path of the phonon energy carriers is, from Table 2.1, A4, = 25nm
at 300 K. As the grain sizes are reduced to characteristic dimensions less than 25 nm (and
more grain boundaries are introduced in the material per unit volume), significant reduction of
the thermal conductivity occurs. Extrapolation of the results of Figure 2.7 to higher tempera-
tures is not recommended, since the mean free path decreases with increasing temperature
(Amgp = 4nm at T = 1525K) and grains of the material may coalesce, merge, and enlarge
at elevated temperatures. Therefore, L/A,g becomes larger at high temperatures, and

TABLE 2.1 Mean free path and critical film thickness for
various materials at T' = 300 K [3,4]

Material Amgp (nm) L, (nm) L, (nm)
Aluminum oxide 5.08 36 22
Diamond (I1a) 315 2200 1400
Gallium arsenide 23 160 100
Gold 31 220 140
Silicon 43 290 180
Silicon dioxide 0.6 4 3
Yttria-stabilized zirconia 25 170 110
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ity of ytiria-stabilized zirconia as a function
Temperature (K) of temperature and mean grain size, L [3].
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reduction of k due to nanoscale effects becomes less pronounced. Research on heat trans-
fer in nanostructured materials continues to reveal novel ways engineers can manipulate
the nanostructure to reduce or increase thermal conductivity [5]. Potentially important
consequences include applications such as gas turbine engine technology [6], microelec-
tronics [7], and renewable energy [8].

The Fluid State The fluid state includes both liquids and gases. Because the intermole-
cular spacing is much larger and the motion of the molecules is more random for the
fluid state than for the solid state, thermal energy transport is less effective. The thermal
conductivity of gases and liquids is therefore generally smaller than that of solids.

The effect of temperature, pressure, and chemical species on the thermal conductivity
of a gas may be explained in terms of the kinetic theory of gases [9]. From this theory it is
known that the thermal conductivity is directly proportional to the density of the gas, the
mean molecular speed ¢, and the mean free path A, which is the average distance traveled
by an energy carrier (a molecule) before experiencing a collision.

1 _
k= gcvpc Amtp (2.10)

For an ideal gas, the mean free path may be expressed as

— (2.11)
\[277d2p

Amfp =

where kj is Boltzmann’s constant, k; = 1.381 X 107 J/K, d is the diameter of the gas
molecule, representative values of which are included in Figure 2.8, and p is the pressure.
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As expected, the mean free path is small for high pressure or low temperature, which causes
densely packed molecules. The mean free path also depends on the diameter of the
molecule, with larger molecules more likely to experience collisions than small molecules;
in the limiting case of an infinitesimally small molecule, the molecules cannot collide,
resulting in an infinite mean free path. The mean molecular speed, ¢, can be determined from
the kinetic theory of gases, and Equation 2.10 may ultimately be expressed as

_9y—=5 ¢, [MkT
k== e 2.12)

where the parameter 1y is the ratio of specific heats, y = ¢,/c,, and N is Avogadro’s number,
N = 6.022 X 10* molecules per mol. Equation 2.12 can be used to estimate the thermal
conductivity of gas, although more accurate models have been developed [10].

It is important to note that the thermal conductivity is independent of pressure except in
extreme cases as, for example, when conditions approach that of a perfect vacuum. Therefore,
the assumption that k is independent of gas pressure for large volumes of gas is appropriate
for the pressures of interest in this text. Accordingly, although the values of k presented in
Table A.4 pertain to atmospheric pressure or the saturation pressure corresponding to the pre-
scribed temperature, they may be used over a much wider pressure range.

Molecular conditions associated with the liquid state are more difficult to describe, and
physical mechanisms for explaining the thermal conductivity are not well understood [11].
The thermal conductivity of nonmetallic liquids generally decreases with increasing tempera-
ture. As shown in Figure 2.9, water, glycerine, and engine oil are notable exceptions. The
thermal conductivity of liquids is usually insensitive to pressure except near the critical point.
Also, thermal conductivity generally decreases with increasing molecular weight. Values of
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the thermal conductivity are often tabulated as a function of temperature for the saturated
state of the liquid. Tables A.5 and A.6 present such data for several common liquids.

Liquid metals are commonly used in high heat flux applications, such as occur in
nuclear power plants. The thermal conductivity of such liquids is given in Table A.7. Note
that the values are much larger than those of the nonmetallic liquids [12].

The Fluid State: Micro- and Nanoscale Effects As for the solid state, the bulk thermal
conductivity of a fluid may be modified when the characteristic dimension of the system
becomes small, in particular for small values of L/A,q,. Similar to the situation of a thin
solid film shown in Figure 2.6b, the molecular mean free path is restricted when a fluid is
constrained by a small physical dimension, affecting conduction across a thin fluid layer.

Mixtures of fluids and solids can also be formulated to tailor the transport properties of
the resulting suspension. For example, nanouids are base liquids that are seeded with
nanometer-sized solid particles. Their very small size allows the solid particles to remain
suspended within the base liquid for a long time. From the heat transfer perspective, a
nanofluid exploits the high thermal conductivity that is characteristic of most solids, as is
evident in Figure 2.5, to boost the relatively low thermal conductivity of base liquids, typi-
cal values of which are shown in Figure 2.9. Typical nanofluids involve liquid water seeded
with nominally spherical nanoparticles of Al,O; or CuO.

Insulation Systems Thermal insulations consist of low thermal conductivity materials
combined to achieve an even lower system thermal conductivity. In conventional ber- ,
powder-, and ake -type insulations, the solid material is finely dispersed throughout an air
space. Such systems are characterized by an effective thermal conductivity, which depends
on the thermal conductivity and surface radiative properties of the solid material, as well as
the nature and volumetric fraction of the air or void space. A special parameter of the system
is its bulk density (solid mass/total volume), which depends strongly on the manner in which
the material is packed.

If small voids or hollow spaces are formed by bonding or fusing portions of the solid
material, a rigid matrix is created. When these spaces are sealed from each other, the sys-
tem is referred to as a cellular insulation. Examples of such rigid insulations are foamed
systems, particularly those made from plastic and glass materials. Reective insulations are
composed of multilayered, parallel, thin sheets or foils of high reflectivity, which are spaced
to reflect radiant energy back to its source. The spacing between the foils is designed to
restrict the motion of air, and in high-performance insulations, the space is evacuated. In all
types of insulation, evacuation of the air in the void space will reduce the effective thermal
conductivity of the system.

Heat transfer through any of these insulation systems may include several modes:
conduction through the solid materials; conduction or convection through the air in the void
spaces; and radiation exchange between the surfaces of the solid matrix. The effective
thermal conductivity accounts for all of these processes, and values for selected insulation
systems are summarized in Table A.3. Additional background information and data are
available in the literature [13, 14].

As with thin films, micro- and nanoscale effects can influence the effective thermal
conductivity of insulating materials. The value of k for a nanostructured silica aerogel
material that is composed of approximately 5% by volume solid material and 95% by
volume air that is trapped within pores of L = 20 nm is shown in Figure 2.10. Note that at
T = 300 K, the mean free path for air at atmospheric pressure is approximately 80 nm. As
the gas pressure is reduced, A,,;, would increase for an unconfined gas, but the molecular
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FIGURE 2.10 Measured thermal conductivity of carbon-doped silica
aerogel as a function of pressure at T = 300K [15].

motion of the trapped air is restricted by the walls of the small pores and k is reduced to
extremely small values relative to the thermal conductivities of conventional matter
reported in Figure 2.4.

2.2.2 Other Relevant Properties

In our analysis of heat transfer problems, it will be necessary to use several properties of
matter. These properties are generally referred to as thermophysical properties and include
two distinct categories, transport and thermodynamic properties. The transport properties
include the diffusion rate coefficients such as k, the thermal conductivity (for heat transfer),
and v, the kinematic viscosity (for momentum transfer). Thermodynamic properties, on the
other hand, pertain to the equilibrium state of a system. Density (p) and specific heat (c,)
are two such properties used extensively in thermodynamic analysis. The product pc,
(J/m?+-K), commonly termed the volumetric heat capacity, measures the ability of a material
to store thermal energy. Because substances of large density are typically characterized by
small specific heats, many solids and liquids, which are very good energy storage media,
have comparable heat capacities (pc, > 1 MJ/m? - K). Because of their very small densities,
however, gases are poorly suited for thermal energy storage (pc, = 1 kJ/m?-K). Densities
and specific heats are provided in the tables of Appendix A for a wide range of solids,
liquids, and gases.

In heat transfer analysis, the ratio of the thermal conductivity to the heat capacity is an
important property termed the thermal diffusivity o, which has units of m?s:

Vo ko
pPCp

It measures the ability of a material to conduct thermal energy relative to its ability to store
thermal energy. Materials of large « will respond quickly to changes in their thermal envi-
ronment, whereas materials of small o will respond more sluggishly, taking longer to reach
a new equilibrium condition.

The accuracy of engineering calculations depends on the accuracy with which the
thermophysical properties are known [16—18]. Numerous examples could be cited of flaws
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in equipment and process design or failure to meet performance specifications that
were attributable to misinformation associated with the selection of key property values
used in the initial system analysis. Selection of reliable property data is an integral part of
any careful engineering analysis. The casual use of data that have not been well character-
ized or evaluated, as may be found in some literature or handbooks, is to be avoided.
Recommended data values for many thermophysical properties can be obtained from
Reference 19. This reference, available in most institutional libraries, was prepared by the
Thermophysical Properties Research Center (TPRC) at Purdue University.

'y | ExamPLE 2.1

The thermal diffusivity « is the controlling transport property for transient conduction.
Using appropriate values of k, p, and ¢, from Appendix A, calculate « for the following
materials at the prescribed temperatures: pure aluminum, 300 and 700 K; silicon carbide,
1000 K; paraffin, 300 K.

SOLUTION

Known: Definition of the thermal diffusivity a.
Find: Numerical values of « for selected materials and temperatures.

Properties: Table A.1, pure aluminum (300 K):

= 2702 kg/m’
p_ = _ k _ 237 W/m-K
¢, = 903J/kg K ra=_-= ;
k = 237W/m-K P 2702 kg/m® X 903 J/kg - K
= 97.1 X 10 °m?%s <
Table A.1, pure aluminum (700 K):
p = 2702 kg/m’ at 300 K

¢, = 1090 J/kg-K at 700 K (by linear interpolation)
k=225 W/m-K at 700 K (by linear interpolation)

Hence
a=X = 225 W/m K =76 X 10"°m¥s <
P 2702 kg/m3 X 1090J/kg - K
Table A.2, silicon carbide (1000 K):
p = 3160 kg/m3 at 300 K 87 W/m- K
¢, = 1195J/kg-K at1000K ra = 3 m

= 23X 10 °m?s <
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Table A.3, paraffin (300 K):

p = 900kg/m’ k 0.24 W/m - K
¢, = 2890 J/kg K ta=——= <A
Y 0raWim-K P 900 kg/m® X 2890 J/kg - K
= 92X 10 m%s <

Comments:

1. Note the temperature dependence of the thermophysical properties of aluminum and
silicon carbide. For example, for silicon carbide, a(1000K) = 0.1 X (300 K); hence
properties of this material have a strong temperature dependence.

2. The physical interpretation of « is that it provides a measure of heat transport (k) relative
to energy storage (pc,). In general, metallic solids have higher «, whereas nonmetallics
(e.g., paraffin) have lower values of «.

3. Linear interpolation of property values is generally acceptable for engineering
calculations.

4. Use of the low-temperature (300K) density at higher temperatures ignores thermal
expansion effects but is also acceptable for engineering calculations.

5. The IHT software provides a library of thermophysical properties for selected solids,

liquids, and gases that can be accessed from the toolbar button, Properties. See Exam-
ple 2.1 in IHT.

F

EXAMPLE 2.2

The bulk thermal conductivity of a nanofluid containing uniformly dispersed, noncontacting
spherical nanoparticles may be approximated by

_ |:kp + Zkbf + ZQD(kp - kbf):|
Tk, 2k — ok, — ko) |

where ¢ is the volume fraction of the nanoparticles, and kyy, k,, and k,; are the thermal con-
ductivities of the base fluid, particle, and nanofluid, respectively. Likewise, the dynamic
viscosity may be approximated as [20]

Mar = Mpp (1 +2.5¢)

Determine the values of kyg, puf> > Map> @and e for a mixture of water and Al,O; nanoparticles
at a temperature of 7= 300 K and a particle volume fraction of ¢ = 0.05. The thermophysical
properties of the particle are k, = 36.0 W/m K, p, = 3970 kg/m’, and ¢, , = 0.765 kJ/kg-K.

SOLUTION

Known: Expressions for the bulk thermal conductivity and viscosity of a nanofluid with
spherical nanoparticles. Nanoparticle properties.
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Find: Values of the nanofluid thermal conductivity, density, specific heat, dynamic viscos-
ity, and thermal diffusivity.

Schematic:
_______ _ Water
. // \\
Nanoparticle ﬂ o 0/\/
b=36owmk \ o © @ N
p, = 3970 kgm3  \ © o !
¢,y =0765kikgK ~ O @ .
Assumptions:

1. Constant properties.
2. Density and specific heat are not affected by nanoscale phenomena.

3. Isothermal conditions.

Properties: Table A.6 (T =300K): Water; ky=0.613W/m-K, py, = 997kg/m’,
Coor = 4.179KI/kg - K, py = 855 X 107 N - s/m”,

Analysis:  From the problem statement,

_ |:kp + Zkbf + 2¢(kp - kbf):|
"k, 2k — ok, — Kep) |

_136.0W/m-K+2X0.613W/m-K+2X0.0536.0—0.613) Wm-K
36.0 W/m-K +2X0.613 Wm-K —0.05(36.0 — 0.613) W/m-K

X 0.613 W/m-K
= 0.705 W/m-K <

Consider the control volume shown in the schematic to be of total volume V. Then the con-
servation of mass principle yields

PtV = V(1 — @) + p, Vo
or, after dividing by the volume V,
pur = 997 kg/m* X (1 — 0.05) + 3970 kg/m® X 0.05 = 1146 kg/m* <
Similarly, the conservation of energy principle yields,
PuiVepne T = poV(1 — @)c, e T + p, Ve, , T
Dividing by the volume V, temperature 7, and nanofluid density p,; yields

_ pbfcp,bf(l - (P) + ppcp,pqo
cp’nf n Pnf
997 kg/m® X 4.179 kl/kg - K X (1 — 0.05) + 3970 kg/m® X 0.765 kJ/kg - K X (0.05)
1146 kg/m®
=3.587 kl/kg - K <
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From the problem statement, the dynamic viscosity of the nanofluid is

Lo = 855 X 107N - s/m? X (1 + 2.5 X 0.05) = 962 X 107N - s/m? <

The nanofluid’s thermal diffusivity is

ko 0.705 W/m- K

= = =171 X 10" m%s <
PntCpat 1146 kg/m® X 3587 J/kg - K

Comments:

1. Ratios of the properties of the nanofluid to the properties of water are as follows.

ky 0.705W/m-K pur _ 1146 kg/m® _

of o 2 T - 10150 1.149

ky 0.613 W/m-K Pet 997 kg/m®

Cont 3587 J/kg-K 962 X 10 °*N+s/m?

pof _ 2207 IKETI ) g5 Mot _ M 1130
Cpbt 4179 1/kg- K Hor 855 X 107°N + s/m?

ay _ 171 X 10" m?/s 166
Qpr 147 X 102 m?s

The relatively large thermal conductivity and thermal diffusivity of the nanofluid
enhance heat transfer rates in some applications. However, all of the thermophysical
properties are affected by the addition of the nanoparticles, and, as will become evi-
dent in Chapters 6 through 9, properties such as the viscosity and specific heat are
adversely affected. This condition can degrade thermal performance when the use of
nanofluids involves convection heat transfer.

. The expression for the nanofluid’s thermal conductivity (and viscosity) is limited to

dilute mixtures of noncontacting, spherical particles. In some cases, the particles do not
remain separated but can agglomerate into long chains, providing effective paths for
heat conduction through the fluid and larger bulk thermal conductivities. Hence, the
expression for the thermal conductivity represents the minimum possible enhancement of
the thermal conductivity by spherical nanoparticles. An expression for the maximum
possible isotropic thermal conductivity of a nanofluid, corresponding to agglomeration
of the spherical particles, is available [21], as are expressions for dilute suspensions of
nonspherical particles [22]. Note that these expressions can also be applied to nanostruc-
tured composite materials consisting of a particulate phase interspersed within a host
binding medium, as will be discussed in more detail in Chapter 3.

. The nanofluid’s density and specific heat are determined by applying the principles of

mass and energy conservation, respectively. As such, these properties do not depend
on the manner in which the nanoparticles are dispersed within the base liquid.

2.3 The Heat Diffusion Equation

A major objective in a conduction analysis is to determine the femperature eld in a
medium resulting from conditions imposed on its boundaries. That is, we wish to know
the temperature distribution, which represents how temperature varies with position in the
medium. Once this distribution is known, the conduction heat flux at any point in
the medium or on its surface may be computed from Fourier’s law. Other important
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quantities of interest may also be determined. For a solid, knowledge of the temperature
distribution could be used to ascertain structural integrity through determination of thermal
stresses, expansions, and deflections. The temperature distribution could also be used to
optimize the thickness of an insulating material or to determine the compatibility of special
coatings or adhesives used with the material.

We now consider the manner in which the temperature distribution can be determined.
The approach follows the methodology described in Section 1.3.1 of applying the energy
conservation requirement. In this case, we define a differential control volume, identify the
relevant energy transfer processes, and introduce the appropriate rate equations. The result
is a differential equation whose solution, for prescribed boundary conditions, provides the
temperature distribution in the medium.

Consider a homogeneous medium within which there is no bulk motion (advection) and
the temperature distribution 7(x, y, z) is expressed in Cartesian coordinates. Following the
methodology of applying conservation of energy (Section 1.3.1), we first define an infini-
tesimally small (differential) control volume, dx * dy - dz, as shown in Figure 2.11. Choosing to
formulate the first law at an instant of time, the second step is to consider the energy processes
that are relevant to this control volume. In the absence of motion (or with uniform motion), there
are no changes in mechanical energy and no work being done on the system. Only thermal
forms of energy need be considered. Specifically, if there are temperature gradients, conduc-
tion heat transfer will occur across each of the control surfaces. The conduction heat rates per-
pendicular to each of the control surfaces at the x-, y-, and z-coordinate locations are indicated
by the terms ¢,, g,, and g, respectively. The conduction heat rates at the opposite surfaces can
then be expressed as a Taylor series expansion where, neglecting higher-order terms,

a4,

Qerax = e T 50 dx (2.13a)
p— (qu

qy+dy - Qy + @d)’ (213b)
dq

9z+a; = 4 + T;dz (213C)

T(x, v, 2)

A + dx

Ficure 2.11  Differential control volume, dx dy dz, for conduction analysis in Cartesian
coordinates.
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In words, Equation 2.13a simply states that the x-component of the heat transfer rate at
x + dx is equal to the value of this component at x plus the amount by which it changes
with respect to x times dx.

Within the medium there may also be an energy source term associated with the rate of
thermal energy generation. This term is represented as

E,=qdxdydz (2.14)

where ¢ is the rate at which energy is generated per unit volume of the medium (W/m?). In
addition, changes may occur in the amount of the internal thermal energy stored by the
material in the control volume. If the material is not experiencing a change in phase, latent
energy effects are not pertinent, and the energy storage term may be expressed as

E,= pcp%dx dy dz (2.15)

where pc, T/t is the time rate of change of the sensible (thermal) energy of the medium
per unit volume.
Once again it is important to note that the terms E, and E, represent different physical

processes. The energy generation term E, is a manifestation of some energy conversion
process involving thermal energy on one hand and some other form of energy, such as
chemical, electrical, or nuclear, on the other. The term is positive (a source) if thermal
energy is being generated in the material at the expense of some other energy form; it is
negative (a sink) if thermal energy is being consumed. In contrast, the energy storage
term E refers to the rate of change of thermal energy stored by the matter.

The last step in the methodology outlined in Section 1.3.1 is to express conservation of
energy using the foregoing rate equations. On a rate basis, the general form of the conser-
vation of energy requirement is

E, +E,— E, = Eg (1.12¢)

Hence, recognizing that the conduction rates constitute the energy inflow E;, and outflow
E, ., and substituting Equations 2.14 and 2.15, we obtain

aT
qx + q_\' + q. + q dx dy dZ T Gxtdx — CIy+dy T Yvda: pcpﬁdx dy dZ (216)
Substituting from Equations 2.13, it follows that

g P Ty aeavdz = e T axavd (2.17)
X V=g, &t qdxdydz=pe, 5 dxdydz )

The conduction heat rates in an isotropic material may be evaluated from Fourier’s law,

aT

q,= —ka'ydza (2.18a)
- T

gy = —kdxdz P (2.18b)
- T

q.= —kdxdy iz (2.18c)

where each heat flux component of Equation 2.6 has been multiplied by the appro-
priate control surface (differential) area to obtain the heat transfer rate. Substituting
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Equations 2.18 into Equation 2.17 and dividing out the dimensions of the control vol-
ume (dx dy dz), we obtain

9 (, T\, a(,oT _ T
&x(k&x>+(9y<kﬁy> §Z<k> q—pc,,o,,t (2.19)

Equation 2.19 is the general form, in Cartesian coordinates, of the heat diffusion equa-
tion. This equation, often referred to as the heat equation, provides the basic tool for
heat conduction analysis. From its solution, we can obtain the temperature distribution
T(x, y, z) as a function of time. The apparent complexity of this expression should not
obscure the fact that it describes an important physical condition, that is, conservation
of energy. You should have a clear understanding of the physical significance of each
term appearing in the equation. For example, the term d(kd7/dx)/dx is related to the net
conduction heat flux info the control volume for the x-coordinate direction. That is,
multiplying by dx,

o <k ) dx=q - ¢, (2.20)

with similar expressions applying for the fluxes in the y- and z-directions. In words, the
heat equation, Equation 2.19, therefore states that at any point in the medium the net
rate of energy transfer by conduction into a unit volume plus the volumetric rate of ther-
mal energy generation must equal the rate of change of thermal energy stored within
the volume.

It is often possible to work with simplified versions of Equation 2.19. For example, if
the thermal conductivity is constant, the heat equation is

VAL IFRUAL AL R et (2.21)

where a = kipc, is the thermal diffusivity. Additional simplifications of the general form of
the heat equation are often possible. For example, under steady-state conditions, there can
be no change in the amount of energy storage; hence Equation 2.19 reduces to

g (,T\, 8 (, 0T\, a(,0T\, _
= (k ax> e (k ﬁy> + (9Z<k(9z> +g=0 (2.22)

Moreover, if the heat transfer is one-dimensional (e.g., in the x-direction) and there is no
energy generation, Equation 2.22 reduces to

d (,dT
k==1]=0 2.23
dx ( dx> ( )

The important implication of this result is that, under steady-state, one-dimensional condi-
tions with no energy generation, the heat flux is a constant in the direction of transfer
(dgyldx = 0).

The heat equation may also be expressed in cylindrical and spherical coordinates. The
differential control volumes for these two coordinate systems are shown in Figures 2.12
and 2.13.
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FiGure 2.12  Differential control volume, dr - r d¢ + dz, for conduction
analysis in cylindrical coordinates (r, ¢, 2).

Cylindrical Coordinates When the del operator V of Equation 2.3 is expressed in
cylindrical coordinates, the general form of the heat flux vector and hence of Fourier’s
law is

"no_— __ — ‘ﬂ 'liT ﬂ
q' = —kVT k(z o +j o +k &z> (2.24)
where
" _ ﬂ—' " _— ELT no— _ ﬂ—‘
r= ko 6= Trae BT TRy (2:25)
9o + do

Ficure 2.13  Differential control volume, dr - r sinf d¢ * r d6, for
conduction analysis in spherical coordinates (r, ¢, 6).
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are heat flux components in the radial, circumferential, and axial directions, respectively.
Applying an energy balance to the differential control volume of Figure 2.12, the following
general form of the heat equation is obtained:

1o or\, 1 d (ar\ o (T, _  or
ré'r<krar>+ 2&¢<k&¢> o"z(ké‘z>+q PS5y (2.26)

Spherical Coordinates In spherical coordinates, the general form of the heat flux vector
and Fourier’s law is

gT | 14T | dT
g =—ikvT=—k(i%L + +— Lt 227
(’ I¥ 00 rmn9a¢> @.27)
where
T " k oT y k9T
= L = k2% = 2.8
& ar T Trae 1T Tiing ag (2:28)

are heat flux components in the radial, polar, and azimuthal directions, respectively. Apply-
ing an energy balance to the differential control volume of Figure 2.13, the following
general form of the heat equation is obtained:

14 2aT> 1 ( aT>
L9 (2L 4 k
P2 or ( ar r?sin’0 dp \ do

1 JaT
(k sinf ) +q= PS5 (2.29)

r2sinf 90 a0

You should attempt to derive Equation 2.26 or 2.29 to gain experience in applying conser-
vation principles to differential control volumes (see Problems 2.35 and 2.36). Note that the
temperature gradient in Fourier’s law must have units of K/m. Hence, when evaluating
the gradient for an angular coordinate, it must be expressed in terms of the differential
change in arc length. For example, the heat flux component in the circumferential direction
of a cylindrical coordinate system is g, = —(k/r)(dT/d¢), not gy, = —k(dT/dP).

EXAMPLE 2.3

The temperature distribution across a wall 1 m thick at a certain instant of time is
given as

T(x) =a+ bx + cx*

where T is in degrees Celsius and x is in meters, while a = 900°C, b = —300°C/m, and
¢ = —50°C/m*. A uniform heat generation, ¢ = 1000 W/m?, is present in the wall of area
10 m? having the properties p = 1600 kg/m?, k = 40 W/m-K, and ¢, = 4kl/kg-K.
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1. Determine the rate of heat transfer entering the wall (x = 0) and leaving the wall (x = 1 m).
2. Determine the rate of change of energy storage in the wall.
3. Determine the time rate of temperature change at x = 0, 0.25, and 0.5 m.

SOLUTION
|

Known: Temperature distribution 7(x) at an instant of time # in a one-dimensional wall
with uniform heat generation.

Find:
1. Heat rates entering, ¢;, (x = 0), and leaving, g, (x = 1 m), the wall.
2. Rate of change of energy storage in the wall, E.
3. Time rate of temperature change at x = 0, 0.25, and 0.5 m.

Schematic:
A=10m? 4= 1000 W/m3
1 1 k =40 W/m-K
| I p=1600 kg/m®
| I c,=4kikgK
| |
Tx) = : :
a+bx + cx? T |
1 A 1
| |
1 8 1
| g |
| st 1
| |
| |
qin—> : : —»qout
| |
| |
| |
| |
l« L=1m >
Loy
Assumptions:

1. One-dimensional conduction in the x-direction.
2. Isotropic medium with constant properties.

3. Uniform internal heat generation, ¢ (W/m>).

Analysis:

1. Recall that once the temperature distribution is known for a medium, it is a simple
matter to determine the conduction heat transfer rate at any point in the medium or at
its surfaces by using Fourier’s law. Hence the desired heat rates may be determined by
using the prescribed temperature distribution with Equation 2.1. Accordingly,

T
Gin = q(0) = —kA MY = —kA(D + 2¢x),—

Gin = —bkA =300°C/m X 40 W/m-K X 10 m* = 120 kW <
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Similarly,
Gou = 4.1) = —KAT], = —KA(b + 2c0),.,
Gou = — (b + 2cL)kA = —[—300°C/m
+ 2(—50°C/m?) X 1m] X 40 W/m-K X 10 m*> = 160 kW <

2. The rate of change of energy storage in the wall E; may be determined by applying an
overall energy balance to the wall. Using Equation 1.12c for a control volume about
the wall,

Ey+ E, = Eg = E,
where E, = gAL, it follows that
Ey=Ej, + E; = Eqi = Gin T AL — qou
E, = 120 kW + 1000 W/m? X 10 m?> X 1 m — 160 kW
E,=—-30kW <

3. The time rate of change of the temperature at any point in the medium may be deter-
mined from the heat equation, Equation 2.21, rewritten as

2
T _ k &T . 4

at PCp gx? PCp
From the prescribed temperature distribution, it follows that
PT_ 4 <(9T>
o2 dx\dx
= % (b + 2¢x) = 2¢ = 2(=50°C/m*) = —100°C/m*

Note that this derivative is independent of position in the medium. Hence the time rate
of temperature change is also independent of position and is given by

aT _ 40 W/m - K
9t 1600 kg/m® X 4 kl/kg - K

X (—100°C/m?)

1000 W/m®
1600 kg/m*® X 4 kJ/kg* K

% =—6.25X 107*C/s + 1.56 X 107%°C/s

=—4.69 X 107*C/s <
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Comments:

1. From this result, it is evident that the temperature at every point within the wall is
decreasing with time.

2. Fourier’s law can always be used to compute the conduction heat rate from knowledge of
the temperature distribution, even for unsteady conditions with internal heat generation.

Microscale Effects For most practical situations, the heat diffusion equations generated
in this text may be used with confidence. However, these equations are based on Fourier’s
law, which does not account for the finite speed at which thermal information is propagated
within the medium by the various energy carriers. The consequences of the finite propaga-
tion speed may be neglected if the heat transfer events of interest occur over a sufficiently
long time scale, Az, such that

/\mfp

cAt

The heat diffusion equations of this text are likewise invalid for problems where boundary
scattering must be explicitly considered. For example, the temperature distribution within
the thin film of Figure 2.6b cannot be determined by applying the foregoing heat diffusion
equations. Additional discussion of micro- and nanoscale heat transfer applications and
analysis methods is available in the literature [1, 5, 10, 23].

<1 (2.30)

2.4 Boundary and Initial Conditions

To determine the temperature distribution in a medium, it is necessary to solve the appro-
priate form of the heat equation. However, such a solution depends on the physical condi-
tions existing at the boundaries of the medium and, if the situation is time dependent, on
conditions existing in the medium at some initial time. With regard to the boundary condi-
tions, there are several common possibilities that are simply expressed in mathematical
form. Because the heat equation is second order in the spatial coordinates, two boundary
conditions must be expressed for each coordinate needed to describe the system. Because
the equation is first order in time, however, only one condition, termed the initial condition,
must be specified.

Three kinds of boundary conditions commonly encountered in heat transfer are summa-
rized in Table 2.2. The conditions are specified at the surface x = 0 for a one-dimensional
system. Heat transfer is in the positive x-direction with the temperature distribution, which
may be time dependent, designated as 7(x, 7). The first condition corresponds to a situation
for which the surface is maintained at a fixed temperature 7. It is commonly termed a
Dirichlet condition, or a boundary condition of the rst kind. It is closely approximated, for
example, when the surface is in contact with a melting solid or a boiling liquid. In both
cases, there is heat transfer at the surface, while the surface remains at the temperature of the
phase change process. The second condition corresponds to the existence of a fixed or con-
stant heat flux ¢ at the surface. This heat flux is related to the temperature gradient at the
surface by Fourier’s law, Equation 2.6, which may be expressed as

s

" JaT "
QX(O) = _ka x=0 — 4s
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TABLE 2.2 Boundary conditions for the heat
diffusion equation at the surface (x = 0)

1. Constant surface temperature T;

70,0 =T, (2.31) A

2. Constant surface heat flux
(a) Finite heat flux

aT P
ka =0 = Y4s (232)

(b) Adiabatic or insulated surface

JoT

ko =0 (2.33) T(x, 1)

F—x

3. Convection surface condition

- kiT =0 = h[T..— T(0, 1] (2.34)
ax

It is termed a Neumann condition, or a boundary condition of the second kind, and may be
realized by bonding a thin film electric heater to the surface. A special case of this condi-
tion corresponds to the perfectly insulated, or adiabatic, surface for which o"T/&x|x=0 =0.
The boundary condition of the third kind corresponds to the existence of convection heat-
ing (or cooling) at the surface and is obtained from the surface energy balance discussed in
Section 1.3.1.

ExAMPLE 2.4

A long copper bar of rectangular cross section, whose width w is much greater than its
thickness L, is maintained in contact with a heat sink at its lower surface, and the tempera-
ture throughout the bar is approximately equal to that of the sink, 7. Suddenly, an electric
current is passed through the bar and an airstream of temperature 7, is passed over the top
surface, while the bottom surface continues to be maintained at 7,. Obtain the differential
equation and the boundary and initial conditions that could be solved to determine the tem-
perature as a function of position and time in the bar.

SOLUTION

Known: Copper bar initially in thermal equilibrium with a heat sink is suddenly heated
by passage of an electric current.
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Find: Differential equation and boundary and initial conditions needed to determine tem-
perature as a function of position and time within the bar.

Schematic:
Copper bar (k, o)
T(x,y,z,1) = Tx, 1)
Air —
T, h —>
[T(L, 1)
. e
! 31
T,=T(,
Assumptions:

1. Since the bar is long and w > L, end and side effects are negligible and heat transfer
within the bar is primarily one dimensional in the x-direction.

2. Uniform volumetric heat generation, q.

3. Constant properties.

Analysis:  The temperature distribution is governed by the heat equation (Equation 2.19),
which, for the one-dimensional and constant property conditions of the present problem,
reduces to
2
9T a_10T

o ko @ar o=

where the temperature is a function of position and time, 7(x, f). Since this differential
equation is second order in the spatial coordinate x and first order in time ¢, there must be
two boundary conditions for the x-direction and one condition, termed the initial condition,
for time. The boundary condition at the bottom surface corresponds to case 1 of Table 2.2.
In particular, since the temperature of this surface is maintained at a value, T,, which is
fixed with time, it follows that

70,H=T, 2) <

The convection surface condition, case 3 of Table 2.2, is appropriate for the top surface.
Hence

aT| B
—k G, =T, D= T.] 3 <

The initial condition is inferred from recognition that, before the change in conditions, the
bar is at a uniform temperature 7,. Hence

Tx,0) =T, “) <
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IfT, T., g, and h are known, Equations 1 through 4 may be solved to obtain the time-varying
temperature distribution 7(x, t) following imposition of the electric current.

Comments:

1. The heat sink at x = 0 could be maintained by exposing the surface to an ice bath or by
attaching it to a cold plate. A cold plate contains coolant channels machined in a solid
of large thermal conductivity (usually copper). By circulating a liquid (usually water)
through the channels, the plate and hence the surface to which it is attached may be
maintained at a nearly uniform temperature.

2. The temperature of the top surface 7(L, f) will change with time. This temperature is
an unknown and may be obtained after finding 7(x, 7).

3. We may use our physical intuition to sketch temperature distributions in the bar at
selected times from the beginning to the end of the transient process. If we assume that
T, > T, and that the electric current is sufficiently large to heat the bar to temperatures
in excess of T, the following distributions would correspond to the initial condition
(t = 0), the final (steady-state) condition (f — %), and two intermediate times.

—T1(x, =), Steady-state condition

| — T(x, 0), Initial condition

Distance, x

Note how the distributions comply with the initial and boundary conditions. What is a
special feature of the distribution labeled (b)?

4. Our intuition may also be used to infer the manner in which the heat flux varies with
time at the surfaces (x = 0, L) of the bar. On ¢, — ¢ coordinates, the transient variations
are as follows.

qix, 1)

0 Time, t —>

Convince yourself that the foregoing variations are consistent with the temperature
distributions of Comment 3. For f — o, how are ¢;(0) and ¢}(L) related to the volu-
metric rate of energy generation?

F
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2.5 Summary

Despite the relative brevity of this chapter, its importance must not be underestimated.
Understanding the conduction rate equation, Fourier’s law, is essential. You must be
cognizant of the importance of thermophysical properties; over time, you will develop a
sense of the magnitudes of the properties of many real materials. Likewise, you must
recognize that the heat equation is derived by applying the conservation of energy principle
to a differential control volume and that it is used to determine temperature distributions
within matter. From knowledge of the distribution, Fourier’s law can be used to determine
the corresponding conduction heat rates. A firm grasp of the various types of thermal
boundary conditions that are used in conjunction with the heat equation is vital. Indeed,
Chapter 2 is the foundation on which Chapters 3 through 5 are based, and you are encour-
aged to revisit this chapter often. You may test your understanding of various concepts by
addressing the following questions.

* In the general formulation of Fouriers law (applicable to any geometry), what are the
vector and scalar quantities? Why is there a minus sign on the right-hand side of
the equation?

* What is an isothermal surface? What can be said about the heat flux at any location on
this surface?

e What form does Fouriers law take for each of the orthogonal directions of Cartesian,
cylindrical, and spherical coordinate systems? In each case, what are the units of the
temperature gradient? Can you write each equation from memory?

* An important property of matter is defined by Fouriers law . What is it? What is its
physical significance? What are its units?

e What is an isotropic material?

* Why is the thermal conductivity of a solid generally larger than that of a liquid? Why is
the thermal conductivity of a liquid larger than that of a gas?

e Why is the thermal conductivity of an electrically conducting solid generally larger
than that of a nonconductor? Why are materials such as beryllium oxide, diamond, and
silicon carbide (see Table A.2) exceptions to this rule?

* Is the effective thermal conductivity of an insulation system a true manifestation of the
efficacy with which heat is transferred through the system by conduction alone?

* Why does the thermal conductivity of a gas increase with increasing temperature? Why
is it approximately independent of pressure?

* What is the physical significance of the thermal diffusivity? How is it defined and what
are its units?

* What is the physical significance of each term appearing in the heat equation?

* Cite some examples of thermal energy generation. If the rate at which thermal energy is
generated per unit volume, ¢, varies with location in a medium of volume V, how can
the rate of energy generation for the entire medium, E,, be determined from knowledge
of ¢(x, y, 2)?

* For a chemically reacting medium, what kind of reaction provides a source of thermal
energy (¢ > 0)? What kind of reaction provides a sink for thermal energy (g < 0)?

* To solve the heat equation for the temperature distribution in a medium, boundary
conditions must be prescribed at the surfaces of the medium. What physical conditions
are commonly suitable for this purpose?
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Fourier’s Law

2.1 Assume steady-state, one-dimensional heat conduction

through the axisymmetric shape shown below.

Assuming constant properties and no internal heat
generation, sketch the temperature distribution on
T — x coordinates. Briefly explain the shape of
your curve.

2.2 Assume steady-state, one-dimensional conduction in the

axisymmetric object below, which is insulated around its
perimeter.

If the properties remain constant and no internal heat
generation occurs, sketch the heat flux distribution, ¢’ (x),
and the temperature distribution, 7(x). Explain the shapes
of your curves. How do your curves depend on the ther-
mal conductivity of the material?
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A hot water pipe with outside radius r, has a temperature
T. A thick insulation, applied to reduce the heat loss, has
an outer radius r, and temperature 7,. On 7' — r coordi-
nates, sketch the temperature distribution in the insula-
tion for one-dimensional, steady-state heat transfer with
constant properties. Give a brief explanation, justifying
the shape of your curve.

A spherical shell with inner radius r; and outer radius r,
has surface temperatures 7' and 7, respectively, where
T, > T,. Sketch the temperature distribution on 7 — r
coordinates assuming steady-state, one-dimensional
conduction with constant properties. Briefly justify the
shape of your curve.

Assume steady-state, one-dimensional heat conduction
through the symmetric shape shown.

Assuming that there is no internal heat generation,
derive an expression for the thermal conductivity k(x)
for these conditions: A(x) = (1 —x), T(x)= 300
(1 —2x — 1%, and ¢ = 6000 W, where A is in square
meters, 7 in kelvins, and x in meters.

A composite rod consists of two different materials,
A and B, each of length 0.5L.

n T,<T, T,

—x

0.5L L

The thermal conductivity of Material A is half that of
Material B, that is, ky/kg = 0.5. Sketch the steady-state
temperature and heat flux distributions, 7(x) and g¢J,
respectively. Assume constant properties and no inter-
nal heat generation in either material.

A solid, truncated cone serves as a support for a sys-
tem that maintains the top (truncated) face of the cone
at a temperature 7', while the base of the cone is at a
temperature 7, < 7).

2.8

2.9

2.10

T, A,

T,<T,
# Ay> A

The thermal conductivity of the solid depends on tem-
perature according to the relation k = k, — aT, where a
is a positive constant, and the sides of the cone are well
insulated. Do the following quantities increase, decrease,
or remain the same with increasing x: the heat transfer
rate ¢,, the heat flux ¢, the thermal conductivity k, and
the temperature gradient d7/dx?

To determine the effect of the temperature dependence
of the thermal conductivity on the temperature distrib-
ution in a solid, consider a material for which this
dependence may be represented as

k=k,+aT

where k,, is a positive constant and « is a coefficient that
may be positive or negative. Sketch the steady-state
temperature distribution associated with heat transfer in
a plane wall for three cases corresponding to a > 0,
a=0,and a <O0.

A young engineer is asked to design a thermal protec-
tion barrier for a sensitive electronic device that might
be exposed to irradiation from a high-powered infrared
laser. Having learned as a student that a low thermal
conductivity material provides good insulating charac-
teristics, the engineer specifies use of a nanostructured
aerogel, characterized by a thermal conductivity of
k, = 0.005 W/m-K, for the protective barrier. The engi-
neer’s boss questions the wisdom of selecting the aero-
gel because it has a low thermal conductivity. Consider
the sudden laser irradiation of (a) pure aluminum, (b)
glass, and (c) aerogel. The laser provides irradiation of
G = 10 X 10° W/m?. The absorptivities of the materials
are = 0.2, 0.9, and 0.8 for the aluminum, glass, and
aerogel, respectively, and the initial temperature of the
barrier is 7; = 300 K. Explain why the boss is concerned.
Hint: All materials experience thermal expansion (or
contraction), and local stresses that develop within a
material are, to a first approximation, proportional to the
local temperature gradient.

A one-dimensional plane wall of thickness 2L =
100 mm experiences uniform thermal energy generation
of ¢ =1000W/m® and is convectively cooled at
x = *50mm by an ambient fluid characterized by
T, = 20°C. If the steady-state temperature distribution
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within the wall is 7T(x) = a(l®> —x%) + b where
a = 10°C/m? and b = 30°C, what is the thermal con-
ductivity of the wall? What is the value of the convec-
tion heat transfer coefficient, 4?

2.11 Consider steady-state conditions for one-dimensional
conduction in a plane wall having a thermal conductiv-
ity k = 50 W/m-K and a thickness L = 0.25 m, with no
internal heat generation.

L»x L

Determine the heat flux and the unknown quantity for
each case and sketch the temperature distribution, indi-
cating the direction of the heat flux.

Case T,(°C) T,(°C) dT/dx (K/m)
1 50 —20
2 -30 —10
3 70 160
4 40 —80
5 30 200

2.12 Consider a plane wall 100mm thick and of thermal
conductivity 100 W/m-K. Steady-state conditions are
known to exist with 7, = 400K and 7, = 600 K. Deter-
mine the heat flux ¢ and the temperature gradient
dT/dx for the coordinate systems shown.

k) T(x) T(x)

X X X

(a) (b) ()

2.13 A cylinder of radius r,, length L, and thermal conductivity
k is immersed in a fluid of convection coefficient 4 and
unknown temperature 7. At a certain instant the temper-
ature distribution in the cylinder is 7(r) = a + br?, where
a and b are constants. Obtain expressions for the heat
transfer rate at r,, and the fluid temperature.

2.14 In the two-dimensional body illustrated, the gradient at
surface A is found to be d7/dy = 30 K/m. What are
dT/dy and dT/dx at surface B?

97

Insulation S
/ B, Ty = 100°C

< k=10 WmK
> y

L.

A, T, = 0°C

2.15 Consider the geometry of Problem 2.14 for the case
where the thermal conductivity varies with temperature
as k=k,+ al, where k,=10W/m-K, a=—10"
W/m+K? and T is in kelvins. The gradient at surface B is
dT/ox = 30 K/m. What is d7/dy at surface A?

2.16 Steady-state, one-dimensional conduction occurs in a rod
of constant thermal conductivity k and variable cross-
sectional area A,(x) = A,e™, where A, and a are con-
stants. The lateral surface of the rod is well insulated.

Afx) = A, e

(a) Write an expression for the conduction heat rate,
g,(x). Use this expression to determine the tempera-
ture distribution 7(x) and qualitatively sketch the
distribution for 7(0) > T(L).

(b) Now consider conditions for which thermal energy
is generated in the rod at a volumetric rate
q = q, exp(—ax), where g, is a constant. Obtain an
expression for ¢g(x) when the left face (x = 0) is
well insulated.

Thermophysical Properties

2.17 An apparatus for measuring thermal conductivity
employs an electrical heater sandwiched between two
identical samples of diameter 30 mm and length 60 mm,
which are pressed between plates maintained at a uniform
temperature 7, = 77°C by a circulating fluid. A conduct-
ing grease is placed between all the surfaces to ensure
good thermal contact. Differential thermocouples are
imbedded in the samples with a spacing of 15mm. The
lateral sides of the samples are insulated to ensure one-
dimensional heat transfer through the samples.
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Plate, T

o

Sample : ATy

Heater
leads

“ Insulation

Sample

Plate, T,
(a) With two samples of SS316 in the apparatus, the
heater draws 0.353 A at 100V, and the differential
thermocouples indicate AT, = AT, = 25.0°C. What

is the thermal conductivity of the stainless steel sam-

ple material? What is the average temperature of the
samples? Compare your result with the thermal con-
ductivity value reported for this material in Table A.1.

(b) By mistake, an Armco iron sample is placed in
the lower position of the apparatus with one of the
SS316 samples from part (a) in the upper portion. For
this situation, the heater draws 0.601 A at 100V, and
the differential thermocouples indicate AT, = AT, =
15.0°C. What are the thermal conductivity and aver-

age temperature of the Armco iron sample?

(c) What is the advantage in constructing the apparatus
with two identical samples sandwiching the heater
rather than with a single heater—sample combina-
tion? When would heat leakage out of the lateral
surfaces of the samples become significant? Under

what conditions would you expect AT, # AT, ?

2.18 An engineer desires to measure the thermal conductiv-

ity of an aerogel material. It is expected that the aerogel
will have an extremely small thermal conductivity.

Heater
leads

J-L’/Coolant in

Aerogel
sample

-7 Aluminum
: plate

2.19

2.20

(a) Explain why the apparatus of Problem 2.17 cannot
be used to obtain an accurate measurement of the
aerogel’s thermal conductivity.

(b) The engineer designs a new apparatus for which an
electric heater of diameter D = 150mm is sand-
wiched between two thin plates of aluminum. The
steady-state temperatures of the 5-mm-thick alu-
minum plates, 7| and 7,, are measured with ther-
mocouples. Aerogel sheets of thickness r = Smm
are placed outside the aluminum plates, while a
coolant with an inlet temperature of 7,; = 25°C
maintains the exterior surfaces of the aerogel at a
low temperature. The circular aerogel sheets are
formed so that they encase the heater and alu-
minum sheets, providing insulation to minimize
radial heat losses. At steady state, 7, = T, = 55°C,
and the heater draws 125mA at 10V. Determine
the value of the aerogel thermal conductivity k,,.

(c) Calculate the temperature difference across the
thickness of the 5-mm-thick aluminum plates.
Comment on whether it is important to know the
axial locations at which the temperatures of the alu-
minum plates are measured.

(d) If liquid water is used as the coolant with a total
flow rate of m = 1kg/min (0.5kg/min for each of
the two streams), calculate the outlet temperature

of the water, T..,.

Consider a 300 mm X 300 mm window in an aircraft. For
a temperature difference of 80°C from the inner to the
outer surface of the window, calculate the heat loss
through L = 10-mm-thick polycarbonate, soda lime
glass, and aerogel windows, respectively. The thermal
conductivities of the aerogel and polycarbonate are
kyy = 0.014 W/m-K and k,. = 0.21 W/m-K, respectively.
Evaluate the thermal conductivity of the soda lime glass
at 300 K. If the aircraft has 130 windows and the cost to
heat the cabin air is $1/kW+h, compare the costs associ-
ated with the heat loss through the windows for an 8-hour
intercontinental flight.

Consider a small but known volume of metal that has a
large thermal conductivity.

(a) Since the thermal conductivity is large, spatial
temperature gradients that develop within the metal
in response to mild heating are small. Neglecting
spatial temperature gradients, derive a differential
equation that could be solved for the temperature
of the metal versus time 7(¢) if the metal is sub-
jected to a fixed surface heat rate ¢ supplied by an
electric heater.

(b

=

A student proposes to identify the unknown metal
by comparing measured and predicted thermal
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responses. Once a match is made, relevant thermo-
physical properties might be determined, and, in
turn, the metal may be identified by comparison to
published property data. Will this approach work?
Consider aluminum, gold, and silver as the candi-
date metals.

Use IHT to perform the following tasks.
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(a) Graph the thermal conductivity of pure copper,
2024 aluminum, and AISI 302 stainless steel over
the temperature range 300 = 7 = 600 K. Include
all data on a single graph, and comment on the
trends you observe.

(b) Graph the thermal conductivity of helium and air
over the temperature range 300 =T = 800K.
Include the data on a single graph, and comment on

the trends you observe.

(c) Graph the kinematic viscosity of engine oil,
ethylene glycol, and liquid water over the tempera-
ture range 300 = T = 360 K. Include all data on
a single graph, and comment on the trends you

observe.

(d) Graph the thermal conductivity of a water-Al,O;
nanofluid at 7= 300 K over the volume fraction

range 0 = ¢ = 0.08. See Example 2.2.

Calculate the thermal conductivity of air, hydrogen,
and carbon dioxide at 300K, assuming ideal gas
behavior. Compare your calculated values to values
from Table A.4.

A method for determining the thermal conductivity k
and the specific heat c, of a material is illustrated in the
sketch. Initially the two identical samples of diameter
D = 60mm and thickness L = 10mm and the thin
heater are at a uniform temperature of 7, = 23.00°C,
while surrounded by an insulating powder. Suddenly
the heater is energized to provide a uniform heat flux ¢/,
on each of the sample interfaces, and the heat flux is
maintained constant for a period of time, Az,. A short
time after sudden heating is initiated, the temperature at
this interface T, is related to the heat flux as

1/2
t
wpc,,k)

For a particular test run, the electrical heater dissipates
15.0 W for a period of Az, = 120s, and the temperature
at the interface is T,(30s) = 24.57°C after 30s of heat-
ing. A long time after the heater is deenergized,
t > At,, the samples reach the uniform temperature of
T,() = 33.50°C. The density of the sample materials,
determined by measurement of volume and mass, is
p = 3965 kg/m’.

T —T;= 2qZ<

2.24
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Sample 1, D, L, p

Heater leads

Sample 2, D, L, p

Determine the specific heat and thermal conductiv-
ity of the test material. By looking at values of the ther-
mophysical properties in Table A.1 or A.2, identify the
test sample material.

Compare and contrast the heat capacity pc, of common
brick, plain carbon steel, engine oil, water, and soil.
Which material provides the greatest amount of thermal
energy storage per unit volume? Which material would
you expect to have the lowest cost per unit heat capac-
ity? Evaluate properties at 300 K.

A cylindrical rod of stainless steel is insulated on its exte-
rior surface except for the ends. The steady-state tempera-
ture distribution is 7(x) = a — bx/L, where a = 305 K
and b = 10 K. The diameter and length of the rod are
D =20mm and L = 100 mm, respectively. Determine
the heat flux along the rod, ¢;. Hint: The mass of the rod
is M = 0.248 kg.

The Heat Equation

2.26

2.27

At a given instant of time, the temperature distribution
within an infinite homogeneous body is given by the
function

T(x, y,2) = x> — 29> + 22 — xy + 2yz

Assuming constant properties and no internal heat
generation, determine the regions where the tempera-
ture changes with time.

A pan is used to boil water by placing it on a stove, from
which heat is transferred at a fixed rate ¢,. There are two
stages to the process. In Stage 1, the water is taken from
its initial (room) temperature 7; to the boiling point, as
heat is transferred from the pan by natural convection.
During this stage, a constant value of the convection coef-
ficient 4 may be assumed, while the bulk temperature of
the water increases with time, 7., = T.,(¢). In Stage 2, the
water has come to a boil, and its temperature remains at a
fixed value, T, = T, as heating continues. Consider a
pan bottom of thickness L and diameter D, with a coordi-
nate system corresponding to x = 0 and x = L for the sur-
faces in contact with the stove and water, respectively.

(a) Write the form of the heat equation and the boundary/
initial conditions that determine the variation of
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temperature with position and time, 7(x, 7), in the
pan bottom during Stage 1. Express your result in
terms of the parameters q,, D, L, h, and T, as well
as appropriate properties of the pan material.
(b) During Stage 2, the surface of the pan in contact
with the water is at a fixed temperature, 7(L, 1) =
T, > T,. Write the form of the heat equation and
boundary conditions that determine the temperature
distribution 7(x) in the pan bottom. Express your
result in terms of the parameters ¢,, D, L, and T}, as
well as appropriate properties of the pan material.

Uniform internal heat generation at ¢ =5 X 10" W/m®
is occurring in a cylindrical nuclear reactor fuel rod of
50-mm diameter, and under steady-state conditions the
temperature distribution is of the form T(r) = a + br?,
where T is in degrees Celsius and r is in meters, while
a = 800°C and b = —4.167 X 10° °C/m>. The fuel rod
properties are k = 30 W/m-K, p = 1100 kg/m®, and
¢, = 800 J/kg - K.
(a) What is the rate of heat transfer per unit length of
the rod at » = 0 (the centerline) and at » = 25 mm
(the surface)?

(b) If the reactor power level is suddenly increased to
¢, = 10 W/m?, what is the initial time rate of tem-
perature change at » = 0 and » = 25 mm?

Consider a one-dimensional plane wall with constant
properties and uniform internal generation q. The left
face is insulated, and the right face is held at a uniform
temperature.

(a) Using the appropriate form of the heat equation,
derive an expression for the x-dependence of the
steady-state heat flux ¢"(x).

(b) Using a finite volume spanning the range 0=
x = ¢, derive an expression for ¢"(¢) and compare
the expression to your result for part (a).

The steady-state temperature distribution in a one-
dimensional wall of thermal conductivity 50 W/m-K and

231

2.32

thickness 50mm is observed to be 7(°C) =a + b’
where a = 200°C, b = —2000°C/m?, and x is in meters.

(a) What is the heat generation rate ¢ in the wall?

(b) Determine the heat fluxes at the two wall faces. In
what manner are these heat fluxes related to the
heat generation rate?

The temperature distribution across a wall 0.3 m thick at
a certain instant of time is 7T(x) = a + bx + cx?, where
T is in degrees Celsius and x is in meters, a = 200°C,
b = —200°C/m, and ¢ = 30°C/m?. The wall has a ther-
mal conductivity of 1 W/m-K.

(a) On a unit surface area basis, determine the rate of
heat transfer into and out of the wall and the rate
of change of energy stored by the wall.

(b) If the cold surface is exposed to a fluid at 100°C,
what is the convection coefficient?

A plane wall of thickness 2L = 40 mm and thermal con-
ductivity k = 5W/m-K experiences uniform volumetric
heat generation at a rate ¢, while convection heat transfer
occurs at both of its surfaces (x = —L, + L), each of
which is exposed to a fluid of temperature 7,, = 20°C.
Under steady-state conditions, the temperature distribu-
tion in the wall is of the form T(x) = a + bx + cx*> where
a=82.0°C, b=—210°C/m, ¢ = —2 X 10*°C/m? and
x is in meters. The origin of the x-coordinate is at the
midplane of the wall.

(a) Sketch the temperature distribution and identify

significant physical features.

(b)

What is the volumetric rate of heat generation ¢ in
the wall?

(c) Determine the surface heat fluxes, ¢y (—L) and
¢(+L). How are these fluxes related to the heat

generation rate?

What are the convection coefficients for the sur-
facesatx = —Land x = +L?

(d)

(e) Obtain an expression for the heat flux distribution
q"(x). Is the heat flux zero at any location? Explain

any significant features of the distribution.

(f) If the source of the heat generation is suddenly
deactivated (¢ = 0), what is the rate of change of

energy stored in the wall at this instant?

(g) What temperature will the wall eventually reach
with ¢ = 0? How much energy must be removed
by the fluid per unit area of the wall (J/m?) to
reach this state? The density and specific heat of
the wall material are 2600kg/m> and 800J/kg K,

respectively.
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2.33 Temperature distributions within a series of one-
dimensional plane walls at an initial time, at steady
state, and at several intermediate times are as shown.

t— oo =0
—t=0 t—> o0
L
(b)
Lt oo | t— o
///
1
_ ——r=0 —1t=0
Lx L L
(c) (d)

For each case, write the appropriate form of the heat dif-
fusion equation. Also write the equations for the initial
condition and the boundary conditions that are applied at
x =0 and x = L. If volumetric generation occurs, it is
uniform throughout the wall. The properties are constant.

2.34 One-dimensional, steady-state conduction with uniform
internal energy generation occurs in a plane wall with a
thickness of 50 mm and a constant thermal conductivity of
5 W/m-K. For these conditions, the temperature distribu-
tion has the form 7(x) = a + bx + cx*. The surface at
x = 0 has a temperature of 7(0) = 7, = 120°C and experi-
ences convection with a fluid for which 7., = 20°C and
h = 500 W/m?- K. The surface at x = L is well insulated.

T, =120°C
o ST 7(x)

e § k=5 WmK

L =50 mm
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(a) Applying an overall energy balance to the wall, cal-
culate the volumetric energy generation rate g.

(b) Determine the coefficients a, b, and ¢ by applying
the boundary conditions to the prescribed tempera-
ture distribution. Use the results to calculate and
plot the temperature distribution.

(c) Consider conditions for which the convection coef-
ficient is halved, but the volumetric energy genera-
tion rate remains unchanged. Determine the new
values of a, b, and ¢, and use the results to plot the
temperature distribution. Hint: recognize that 7(0)
is no longer 120°C.

(d) Under conditions for which the volumetric energy
generation rate is doubled, and the convection coef-
ficient remains unchanged (7 = 500 W/m?-K),
determine the new values of a, b, and ¢ and plot the
corresponding temperature distribution. Referring
to the results of parts (b), (c), and (d) as Cases 1, 2,
and 3, respectively, compare the temperature distri-
butions for the three cases and discuss the effects of
h and ¢ on the distributions.

2.35 Derive the heat diffusion equation, Equation 2.26, for

cylindrical coordinates beginning with the differential
control volume shown in Figure 2.12.

2.36 Derive the heat diffusion equation, Equation 2.29, for

spherical coordinates beginning with the differential
control volume shown in Figure 2.13.

2.37 The steady-state temperature distribution in a semi-

transparent material of thermal conductivity k and
thickness L exposed to laser irradiation is of the form

A
Tx)= ——e “+Bx+C
x) P

where A, a, B, and C are known constants. For this situ-
ation, radiation absorption in the material is manifested
by a distributed heat generation term, g(x).

Laser irradiation

111

W -

LSemitransparent medium, T(x)

=

(a) Obtain expressions for the conduction heat fluxes at
the front and rear surfaces.

(b) Derive an expression for g(x).

(c) Derive an expression for the rate at which radiation
is absorbed in the entire material, per unit surface
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area. Express your result in terms of the known
constants for the temperature distribution, the ther-
mal conductivity of the material, and its thickness.

One-dimensional, steady-state conduction with no
energy generation is occurring in a cylindrical shell of
inner radius r; and outer radius r,. Under what condition
is the linear temperature distribution shown possible?

T(r)

T(ry)

T(r2)

One-dimensional, steady-state conduction with no
energy generation is occurring in a spherical shell of
inner radius r, and outer radius r,. Under what condi-
tion is the linear temperature distribution shown in
Problem 2.38 possible?

The steady-state temperature distribution in a one-
dimensional wall of thermal conductivity k and thick-
ness L is of the form 7 = ax’ + bx* + cx + d. Derive
expressions for the heat generation rate per unit volume
in the wall and the heat fluxes at the two wall faces
x=0,L).

One—dimensional, steady-state conduction with no

energy generation is occurring in a plane wall of con-
stant thermal conductivity.

120

100

X

1 §=0,k=45WmK
T =20°C
| h=30 W/m2K

i

(a) Is the prescribed temperature distribution possible?
Briefly explain your reasoning.

f 0.18 m
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L

2.43

(b) With the temperature at x = 0 and the fluid temper-
ature fixed at 7(0) = 0°C and T,, = 20°C, respec-
tively, compute and plot the temperature at x = L,
T(L), as a function of & for 10 < h = 100 W/m?-K.
Briefly explain your results.

A plane layer of coal of thickness L = 1 m experiences
uniform volumetric generation at a rate of ¢ = 20 W/m®
due to slow oxidation of the coal particles. Averaged
over a daily period, the top surface of the layer trans-
fers heat by convection to ambient air for which
h=5W/m>-K and T, = 25°C, while receiving solar
irradiation in the amount Gg = 400 W/m?. Irradiation
from the atmosphere may be neglected. The solar
absorptivity and emissivity of the surface are each
ag =& =0.95.

Ambient air
T.,h
R
e ——

(a) Write the steady-state form of the heat diffusion
equation for the layer of coal. Verify that this equa-
tion is satisfied by a temperature distribution of

the form
qu X
2k - 7[2

From this distribution, what can you say about condi-
tions at the bottom surface (x = 0)? Sketch the temper-
ature distribution and label key features.

Tx)=T,+

(b) Obtain an expression for the rate of heat transfer by
conduction per unit area at x = L. Applying an
energy balance to a control surface about the top
surface of the layer, obtain an expression for 7.
Evaluate T and 7(0) for the prescribed conditions.

(c) | Daily average values of G and & depend on a num-
ber of factors, such as time of year, cloud cover,
and wind conditions. For &7 = 5 W/m?-K, compute
and plot 7 and 7(0) as a function of Gy for 50 =
Gy = 500 W/m?. For G5 = 400 W/m?, compute and
plot Tg and T(0) as a function of h for 5=h =
50 W/m*-K.

The cylindrical system illustrated has negligible varia-
tion of temperature in the r- and z-directions. Assume
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that Ar = r, — r; is small compared to r;, and denote
the length in the z-direction, normal to the page, as L.

. /Insulation

(a) Beginning with a properly defined control volume
and considering energy generation and storage
effects, derive the differential equation that prescribes
the variation in temperature with the angular coordi-
nate ¢p. Compare your result with Equation 2.26.

(b) For steady-state conditions with no internal heat gen-
eration and constant properties, determine the tem-
perature distribution 7(¢) in terms of the constants

T\, T,, r;, and r,,. Is this distribution linear in ¢?
(©

For the conditions of part (b) write the expression
for the heat rate g,.

2.44 Beginning with a differential control volume in the

form of a cylindrical shell, derive the heat diffusion
equation for a one-dimensional, cylindrical, radial coor-
dinate system with internal heat generation. Compare
your result with Equation 2.26.

2.45 Beginning with a differential control volume in the

form of a spherical shell, derive the heat diffusion equa-
tion for a one-dimensional, spherical, radial coordinate
system with internal heat generation. Compare your
result with Equation 2.29.

2.46 A steam pipe is wrapped with insulation of inner and

outer radii r; and r,, respectively. At a particular instant
the temperature distribution in the insulation is known
to be of the form

nn=am¢>+q

Are conditions steady-state or transient? How do the
heat flux and heat rate vary with radius?

2.47 For a long circular tube of inner and outer radii r, and

r,, respectively, uniform temperatures 7, and 7, are
maintained at the inner and outer surfaces, while ther-
mal energy generation is occurring within the tube wall
(ry <r<wr,). Consider steady-state conditions for
which T < T5. Is it possible to maintain a linear radial
temperature distribution in the wall? If so, what special
conditions must exist?

2.48

2.49

2.50
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Passage of an electric current through a long conduct-
ing rod of radius r; and thermal conductivity k, results
in uniform volumetric heating at a rate of g. The con-
ducting rod is wrapped in an electrically nonconducting
cladding material of outer radius r, and thermal con-
ductivity k., and convection cooling is provided by an
adjoining fluid.

Conducting
rod, ¢, k

-

Cladding, k

¢

For steady-state conditions, write appropriate forms of
the heat equations for the rod and cladding. Express
appropriate boundary conditions for the solution of
these equations.

Two-dimensional, steady-state conduction occurs in
a hollow cylindrical solid of thermal conductivity
k = 16 W/m-K, outer radius r, = 1 m and overall
length 2z, = 5m, where the origin of the coordinate
system is located at the midpoint of the center line.
The inner surface of the cylinder is insulated, and the
temperature distribution within the cylinder has
the form T(r, z) = a + br* + clnr + dz%, where a =
—20°C, b = 150°C/m?, ¢ = —12°C, d = —300°C/m>
and r and z are in meters.

(a) Determine the inner radius r; of the cylinder.

(b) Obtain an expression for the volumetric rate of heat
generation, g(W/m®).

Determine the axial distribution of the heat flux at the
outer surface, ¢)(r,,z). What is the heat rate at
the outer surface? Is it into or out of the cylinder?

(©

Determine the radial distribution of the heat flux at
the end faces of the cylinder, ¢/(r, +z,) and
q'(r, —z,). What are the corresponding heat rates?
Are they into or out of the cylinder?

(d)

(e)

Verify that your results are consistent with an over-
all energy balance on the cylinder.

An electric cable of radius r; and thermal conductivity
k. is enclosed by an insulating sleeve whose outer sur-
face is of radius r, and experiences convection heat
transfer and radiation exchange with the adjoining air
and large surroundings, respectively. When electric
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current passes through the cable, thermal energy is gen-
erated within the cable at a volumetric rate g.

Electrical cable
Insulation
Tx, 1

Ambient air
T, h

oot

H

(a) Write the steady-state forms of the heat diffusion
equation for the insulation and the cable. Verify
that these equations are satisfied by the following
temperature distributions:

Insulation: T — T - 4+ (T — T In(r/r,)
nsulation: 7(r) = T, + (T, — T,) In(r/ry)
2
. o qri _ r:
Cable: T(r) =T, + ik, (1 rf)

Sketch the temperature distribution, 7(r), in the
cable and the sleeve, labeling key features.
(b) Applying Fourier’s law, show that the rate of con-
duction heat transfer per unit length through the

sleeve may be expressed as
;o 27Tks(Ts,1 - T5,2)
1= In(ry/r))

Applying an energy balance to a control surface
placed around the cable, obtain an alternative
expression for g, expressing your result in terms of
g and r,.

(c) Applying an energy balance to a control surface
placed around the outer surface of the sleeve, obtain
an expression from which T, may be determined as

a function of g, ry, h, T.., &, and T,.

(d) Consider conditions for which 250 A are passing
through a cable having an electric resistance per unit
length of R, = 0.005 )/m, a radius of r; = 15 mm,
and a thermal conductivity of k. =200 W/m-K.
For k,=15Wm-K, r,=155mm, h =25
W/m?-K, ¢ =09, T, =25°C, and T,, = 35°C,
evaluate the surface temperatures, 7,; and T,,,
as well as the temperature 7, at the centerline of

the cable.

(e) | With all other conditions remaining the same, com-
pute and plot T, T, ;, and T, as a function of r, for
15.5=r, =20 mm.

2.51

2.52

Chemical
reaction, ¢(7T,)

Insulation,

k, €

A spherical shell of inner and outer radii »; and r,,
respectively, contains heat-dissipating components, and
at a particular instant the temperature distribution in the
shell is known to be of the form

G
T =—+C,

Are conditions steady-state or transient? How do the
heat flux and heat rate vary with radius?

A chemically reacting mixture is stored in a thin-walled
spherical container of radius r; = 200 mm, and the exother-
mic reaction generates heat at a uniform, but temperature-
dependent volumetric rate of g = g, exp(—A/T,), where
q, = 5000 W/m*, A = 75 K, and T, is the mixture temper-
ature in kelvins. The vessel is enclosed by an insulating
material of outer radius r,, thermal conductivity k, and
emissivity &. The outer surface of the insulation experi-
ences convection heat transfer and net radiation exchange
with the adjoining air and large surroundings, respectively.

Ambient air
T, h

(a) Write the steady-state form of the heat diffusion
equation for the insulation. Verify that this equa-
tion is satisfied by the temperature distribution

) =T,y — (T, — T |~
(r) = 5,1 ( 5,1 .r,2) 1= (ri/ry)

Sketch the temperature distribution, 7(r), labeling

key features.

(b) Applying Fourier’s law, show that the rate of heat
transfer by conduction through the insulation may

be expressed as

47Tk(Ts,1 - Ts,z)
© T Wy~ iy

Applying an energy balance to a control surface
about the container, obtain an alternative expression
for g,, expressing your result in terms of ¢ and r;.
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Applying an energy balance to a control surface
placed around the outer surface of the insulation,
obtain an expression from which 7, may be deter-
mined as a function of ¢, ry, h, T.,, &, and T,,.

The process engineer wishes to maintain a reactor
temperature of T, = T(r;) = 95°C under conditions
for which £ =0.05W/m-K, r, =208 mm, & =5
W/m?*-K, £=0.9, T, =25°C, and T, = 35°C.
What is the actual reactor temperature and the outer
surface temperature T, of the insulation?

Compute and plot the variation of T, with r, for

201 =r, =210mm. The engineer is concerned
about potential burn injuries to personnel who may
come into contact with the exposed surface of the
insulation. Is increasing the insulation thickness a
practical solution to maintaining T, = 45°C? What
other parameter could be varied to reduce 7 ,?

Graphical Representations

2.53 A thin electrical heater dissipating 4000 W/m? is sand-

wiched between

two 25-mm-thick plates whose

exposed surfaces experience convection with a fluid for
which 7,, = 20°C and h = 400 W/m? + K. The thermo-
physical properties of the plate material are p = 2500
kg/m®, ¢ =700J/kg + K, and k = 5 W/m * K.

Fluid
T.,h

11

(@)

(b)

/Electric heater, g,

——p Ck

Fluid
T, h

0!

il

+L

|
-L

o — T

On T — x coordinates, sketch the steady-state tem-
perature distribution for —L =< x = +L. Calculate
values of the temperatures at the surfaces, x = =L,
and the midpoint, x = 0. Label this distribution as
Case 1, and explain its salient features.

Consider conditions for which there is a loss of
coolant and existence of a nearly adiabatic con-
dition on the x = +L surface. On the T — x coordi-
nates used for part (a), sketch the corresponding
steady-state temperature distribution and indicate
the temperatures at x = 0, =L. Label the distribu-
tion as Case 2, and explain its key features.

(©

(d)

105

With the system operating as described in part (b),
the surface x = —L also experiences a sudden loss of
coolant. This dangerous situation goes undetected for
15 min, at which time the power to the heater is
deactivated. Assuming no heat losses from the sur-
faces of the plates, what is the eventual (1 — %),
uniform, steady-state temperature distribution in the
plates? Show this distribution as Case 3 on your
sketch, and explain its key features. Hint: Apply the
conservation of energy requirement on a time-interval
basis, Eq. 1.12b, for the initial and final conditions
corresponding to Case 2 and Case 3, respectively.

On T — ¢ coordinates, sketch the temperature his-
tory at the plate locations x = 0, =L during the
transient period between the distributions for Cases
2 and 3. Where and when will the temperature in
the system achieve a maximum value?

2.54 The one-dimensional system of mass M with constant
properties and no internal heat generation shown in the
figure is initially at a uniform temperature 7;. The elec-
trical heater is suddenly energized, providing a uniform
heat flux ¢/ at the surface x = 0. The boundaries at x = L
and elsewhere are perfectly insulated.

Jilnsulation

—F~—— System, mass M

(a)

(b)

©)

(d)

[ R - Electrical

heater

Write the differential equation, and identify the
boundary and initial conditions that could be used
to determine the temperature as a function of posi-
tion and time in the system.

On T — x coordinates, sketch the temperature distri-
butions for the initial condition (# = 0) and for several
times after the heater is energized. Will a steady-state
temperature distribution ever be reached?

On gy — t coordinates, sketch the heat flux ¢ (x, 7) at
the planes x = 0, x = L/2, and x = L as a function
of time.

After a period of time 7, has elapsed, the heater
power is switched off. Assuming that the insulation
is perfect, the system will eventually reach a final
uniform temperature 7, Derive an expression that
can be used to determine 7 as a function of the
parameters ¢, t,, T;, and the system characteristics
M, c,, and A, (the heater surface area).

> Fpr

2.55 Consider a one-dimensional plane wall of thickness 2L.
The surface at x = —L is subjected to convective
conditions characterized by T, h;, while the surface
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at x = +Lis subjected to conditions T, », h,. The initial
temperature of the wall is T, = (T..; + T..,)/2 where
Toy > Top.

TO \
hy, T 1 \ hy, Ton
Tw,l > Tw,2
| e
2L
I

(a) Write the differential equation, and identify the
boundary and initial conditions that could be used
to determine the temperature distribution 7(x, ) as

a function of position and time.
(b) On T — x coordinates, sketch the temperature dis-
tributions for the initial condition, the steady-state
condition, and for two intermediate times for the
case h, = h,.
On ¢; — t coordinates, sketch the heat flux ql(x, 1)
at the planes x = 0, —L, and +L.

©
(d) The value of A&, is now doubled with all other con-
ditions being identical as in parts (a) through (c).
On T — x coordinates drawn to the same scale as
used in part (b), sketch the temperature distribu-
tions for the initial condition, the steady-state con-
dition, and for two intermediate times. Compare the
sketch to that of part (b).

Using the doubled value of 4,, sketch the heat flux
q(x, 1) at the planes x = 0, —L, and +L on the same
plot you prepared for part (c). Compare the two
responses.

(e)

A large plate of thickness 2L is at a uniform tempera-
ture of 7; = 200°C, when it is suddenly quenched by
dipping it in a liquid bath of temperature 7,, = 20°C.
Heat transfer to the liquid is characterized by the con-
vection coefficient /.

(a) If x = 0 corresponds to the midplane of the wall, on
T — x coordinates, sketch the temperature distribu-
tions for the following conditions: initial condition
(t=0), steady-state condition (#— ), and two
intermediate times.

(b) On ¢! — t coordinates, sketch the variation with
time of the heat flux atx = L.

2.57

2.58

(c) If h = 100 W/m?-K, what is the heat flux at x = L
and r = 0? If the wall has a thermal conductivity of
k = 50 W/m-K what is the corresponding tempera-
ture gradient at x = L?

(d) Consider a plate of thickness 2L = 20 mm with a
density of p =2770kg/m> and a specific heat
¢, = 875J/kg- K. By performing an energy balance
on the plate, determine the amount of energy per
unit surface area of the plate (J/m?) that is trans-
ferred to the bath over the time required to reach

steady-state conditions.
(e) From other considerations, it is known that, during
the quenching process, the heat flux at x = +L and
x = —L decays exponentially with time according to
the relation, i = A exp(—Bt), where ¢ is in seconds,
A =1.80 X 10* W/m? and B = 4.126 X 107 s~ ",
Use this information to determine the energy per
unit surface area of the plate that is transferred to
the fluid during the quenching process.

The plane wall with constant properties and no internal
heat generation shown in the figure is initially at a uniform
temperature 7;. Suddenly the surface at x = L is heated by
a fluid at 7', having a convection heat transfer coefficient /.
The boundary at x = 0 is perfectly insulated.

T, h

y

Insulation——

L

(a) Write the differential equation, and identify the
boundary and initial conditions that could be used
to determine the temperature as a function of posi-
tion and time in the wall.

(b) On T — x coordinates, sketch the temperature dis-
tributions for the following conditions: initial con-
dition (# = 0), steady-state condition (r — %), and

two intermediate times.

(¢) On g/ — t coordinates, sketch the heat flux at the
locations x = 0, x = L. That is, show qualitatively

how ¢;(0, ) and ¢/(L, t) vary with time.
(d)

Write an expression for the total energy transferred
to the wall per unit volume of the wall (J/m?).

Consider the steady-state temperature distributions
within a composite wall composed of Material A and
Material B for the two cases shown. There is no
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internal generation, and the conduction process is one-
dimensional.

T(x)

—

e— Ly —»e— Lg —»
kep kep

L«

Case 1 Case 2

Answer the following questions for each case. Which
material has the higher thermal conductivity? Does the
thermal conductivity vary significantly with tempera-
ture? If so, how? Describe the heat flux distribution
ql(x) through the composite wall. If the thickness and
thermal conductivity of each material were both dou-
bled and the boundary temperatures remained the same,
what would be the effect on the heat flux distribution?

Case 1. Linear temperature distributions exist in both
materials, as shown.

Case 2. Nonlinear temperature distributions exist in
both materials, as shown.

A plane wall has constant properties, no internal heat
generation, and is initially at a uniform temperature 7.
Suddenly, the surface at x = L is heated by a fluid at 7,
having a convection coefficient /4. At the same instant,
the electrical heater is energized, providing a constant
heat flux ¢, at x = 0.

T.

cor

h

Insulation —«

L. ‘

(@) On T — x coordinates, sketch the temperature
distributions for the following conditions: initial
condition (r = 0), steady-state condition (f — %),
and for two intermediate times.
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(b) On ¢! — x coordinates, sketch the heat flux corre-
sponding to the four temperature distributions of
part (a).

(c) On g/ — t coordinates, sketch the heat flux at the
locations x = 0 and x = L. That is, show qualita-
tively how ¢/(0, 1) and ¢/(L, t) vary with time.

(d) Derive an expression for the steady-state tempera-
ture at the heater surface, 7(0, %), in terms of ¢,
T, k, h, and L.

A plane wall with constant properties is initially at a uni-
form temperature 7,. Suddenly, the surface at x = L is
exposed to a convection process with a fluid at 7., (>T,)
having a convection coefficient /. Also, suddenly the
wall experiences a uniform internal volumetric heating ¢
that is sufficiently large to induce a maximum steady-
state temperature within the wall, which exceeds that of
the fluid. The boundary at x = O remains at 7,

k4= 0)

T, h

P

L

L.

(@) On T — x coordinates, sketch the temperature dis-
tributions for the following conditions: initial con-
dition (# = 0), steady-state condition (# — %), and
for two intermediate times. Show also the distribu-
tion for the special condition when there is no heat
flow at the x = L boundary.

(b) On gy — ¢ coordinates, sketch the heat flux for the
locations x =0 and x =L, that is, ¢J0,¢) and

(L, 1), respectively.

Consider the conditions associated with Problem 2.60,
but now with a convection process for which 7, < T,

(@) On T — x coordinates, sketch the temperature dis-
tributions for the following conditions: initial con-
dition (# = 0), steady-state condition (# — %), and
for two intermediate times. Identify key features of
the distributions, especially the location of the
maximum temperature and the temperature gradi-
entatx = L.

"

On ¢! —t coordinates, sketch the heat flux for
the locations x = 0 and x = L, that is, ¢/(0, r) and
gL, 1), respectively. Identify key features of the flux
histories.

(b)
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Consider the steady-state temperature distribution within
a composite wall composed of Materials A and B.

The conduction process is one-dimensional. Within
which material does uniform volumetric generation
occur? What is the boundary condition at x = —L,?
How would the temperature distribution change if the
thermal conductivity of Material A were doubled?
How would the temperature distribution change if the
thermal conductivity of Material B were doubled? Does
a contact resistance exist at the interface between the
two materials? Sketch the heat flux distribution gy(x)
through the composite wall.

A spherical particle of radius r; experiences uniform ther-
mal generation at a rate of §. The particle is encapsulated
by a spherical shell of outside radius r, that is cooled by
ambient air. The thermal conductivities of the particle and
shell are k; and k,, respectively, where k; = 2k,.

Chemical reaction

q . n
Ambient air
T, h

Control volume B

Control volume A

(a) By applying the conservation of energy principle to
spherical control volume A, which is placed at an
arbitrary location within the sphere, determine a
relationship between the temperature gradient
dT/dr and the local radius r, for 0 = r = r,.

(b) By applying the conservation of energy principle
to spherical control volume B, which is placed

at an arbitrary location within the spherical shell,
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determine a relationship between the temperature
gradient d7/dr and the local radius r, for ry = r = r,.

(¢) On T — r coordinates, sketch the temperature dis-
tribution over the range 0 = r = r,.

A long cylindrical rod, initially at a uniform tempera-
ture T;, is suddenly immersed in a large container of
liquid at 7., < 7,. Sketch the temperature distribution
within the rod, 7(r), at the initial time, at steady state,
and at two intermediate times. On the same graph,
carefully sketch the temperature distributions that
would occur at the same times within a second rod that
is the same size as the first rod. The densities and spe-
cific heats of the two rods are identical, but the thermal
conductivity of the second rod is very large. Which rod
will approach steady-state conditions sooner? Write the
appropriate boundary conditions that would be applied
at r = 0 and r = D/2 for either rod.

A plane wall of thickness L = 0.1 m experiences uniform
volumetric heating at a rate g. One surface of the wall
(x = 0) is insulated, and the other surface is exposed to a
fluid at 7., = 20°C, with convection heat transfer charac-
terized by 7 = 1000 W/m? - K. Initially, the temperature
distribution in the wall is T(x,0) = a + bx’, where
a =300°C, b = —1.0 X 10°C/m’, and x is in meters.
Suddenly, the volumetric heat generation is deactivated
(g = 0 for t = 0), while convection heat transfer contin-
ues to occur at x = L. The properties of the wall are
p = 7000 kg/m?, ¢, =450 J/kg-K, and k = 90 W/m-K.

k, p, ¢, qlr<0)

T.

(s BBl

(a) Determine the magnitude of the volumetric energy
generation rate § associated with the initial condi-
tion (¢ < 0).

On T — x coordinates, sketch the temperature dis-
tribution for the following conditions: initial condi-
tion (t <O0), steady-state condition (#— ), and
two intermediate conditions.

h

(b)

(¢) On ¢} — t coordinates, sketch the variation with
time of the heat flux at the boundary exposed to the
convection process, ¢x(L,?). Calculate the corre-

sponding value of the heat flux at t = 0, ¢J(L, 0)-
(d)

Calculate the amount of energy removed from the
wall per unit area (J/m?) by the fluid stream
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as the wall cools from its initial to steady-state
condition.

A plane wall that is insulated on one side (x =0) is
initially at a uniform temperature 7}, when its exposed
surface at x = L is suddenly raised to a temperature 7.

(a) Verify that the following equation satisfies the heat
equation and boundary conditions:

LX’Z)_T'V:Cex Tt cos| T
1P\ 2L

Ti - Ts

where C, is a constant and « is the thermal

diffusivity.
(b) Obtain expressions for the heat flux at x =0 and
x=L.
Sketch the temperature distribution 7(x) at # = 0, at
t — oo, and at an intermediate time. Sketch the vari-
ation with time of the heat flux at x = L, g/ (7).

()

(d)

What effect does « have on the thermal response of
the material to a change in surface temperature?

A composite one-dimensional plane wall is of overall
thickness 2L. Material A spans the domain —L = x <0
and experiences an exothermic chemical reaction leading
to a uniform volumetric generation rate of ¢,. Material B
spans the domain 0 = x = L and undergoes an endo-
thermic chemical reaction corresponding to a uniform
volumetric generation rate of gz = —¢,. The surfaces
at x = =L are insulated. Sketch the steady-state
temperature and heat flux distributions 7(x) and
ql(x), respectively, over the domain —L =< x = L for
ky = kg, ky = 0.5kz, and k, = 2kgz. Point out the
important features of the distributions you have drawn.
If g5 = —2g,, can you sketch the steady-state tempera-
ture distribution?

Typically, air is heated in a hair dryer by blowing it
across a coiled wire through which an electric current is
passed. Thermal energy is generated by electric resis-
tance heating within the wire and is transferred by con-
vection from the surface of the wire to the air. Consider
conditions for which the wire is initially at room
temperature, 7;, and resistance heating is concurrently
initiated with airflow at # = 0.
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Coiled wire (r,, L, k, p, c/,)

q
<D
-—
- -
- -
Air Airflow
- T. h Pelec |
r
rD
(a) For a wire radius r,, an air temperature 7, and a

(b)

()

(d)

convection coefficient s, write the form of the
heat equation and the boundary/initial conditions
that govern the transient thermal response, 7(r, 1),
of the wire.

If the length and radius of the wire are 500 mm and
1 mm, respectively, what is the volumetric rate of
thermal energy generation for a power consump-
tion of P,,. = 500 W? What is the convection heat
flux under steady-state conditions?

On T — r coordinates, sketch the temperature
distributions for the following conditions: initial
condition (¢ = 0), steady-state condition (r — ),
and for two intermediate times.

On ¢ — t coordinates, sketch the variation of the
heat flux with time for locations at » = 0 and r = r,,.

2.69 The steady-state temperature distribution in a compos-
ite plane wall of three different materials, each of con-
stant thermal conductivity, is shown.

2
I
I
I
I
I
I

(@)

(b)

(c)

3 4
I
I
I
I
I

93 q3 a; |

X

Comment on the relative magnitudes of ¢; and g3,
and of ¢5 and ¢j.

Comment on the relative magnitudes of k, and kg,
and of kg and kc.

Sketch the heat flux as a function of x.
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112 Chapter 3 ® One-Dimensional, Steady-State Conduction

In this chapter we treat situations for which heat is transferred by diffusion under one-
dimensional, steady-state conditions. The term one-dimensional refers to the fact that only
one coordinate is needed to describe the spatial variation of the dependent variables. Hence,
in a one-dimensional system, temperature gradients exist along only a single coordinate
direction, and heat transfer occurs exclusively in that direction. The system is characterized
by steady-state conditions if the temperature at each point is independent of time. Despite
their inherent simplicity, one-dimensional, steady-state models may be used to accurately
represent numerous engineering systems.

We begin our consideration of one-dimensional, steady-state conduction by discussing
heat transfer with no internal generation of thermal energy (Sections 3.1 through 3.4). The
objective is to determine expressions for the temperature distribution and heat transfer rate
in common (planar, cylindrical, and spherical) geometries. For such geometries, an addi-
tional objective is to introduce the concept of thermal resistance and to show how thermal
circuits may be used to model heat flow, much as electrical circuits are used for current
flow. The effect of internal heat generation is treated in Section 3.5, and again our objective
is to obtain expressions for determining temperature distributions and heat transfer rates. In
Section 3.6, we consider the special case of one-dimensional, steady-state conduction for
extended surfaces. In their most common form, these surfaces are termed ns and are used
to enhance heat transfer by convection to an adjoining fluid. In addition to determining
related temperature distributions and heat rates, our objective is to introduce performance
parameters that may be used to determine their efficacy. Finally, in Sections 3.7 through
3.9 we apply heat transfer and thermal resistance concepts to the human body, including
the effects of metabolic heat generation and perfusion; to thermoelectric power generation
driven by the Seebeck effect; and to micro- and nanoscale conduction in thin gas layers and
thin solid Ims .

3.1 The Plane Wall

For one-dimensional conduction in a plane wall, temperature is a function of the x-coordinate
only and heat is transferred exclusively in this direction. In Figure 3.1a, a plane wall sepa-
rates two fluids of different temperatures. Heat transfer occurs by convection from the hot
fluid at T’ ; to one surface of the wall at T ;, by conduction through the wall, and by con-
vection from the other surface of the wall at T, to the cold fluid at T, ».

We begin by considering conditions within the wall. We first determine the temperature
distribution, from which we can then obtain the conduction heat transfer rate.

3.1.1 Temperature Distribution

The temperature distribution in the wall can be determined by solving the heat equation
with the proper boundary conditions. For steady-state conditions with no distributed
source or sink of energy within the wall, the appropriate form of the heat equation is
Equation 2.23

d(,dT) _
dx(kdx> =0 (3.1
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val j
T,

5,1

11

Hot fluid
T.1 M
[
L’X x=L
Cold fluid
Too2r 12
(a)
Tw,l rv,l TY,Z TDO,Z
9 v 1" v /\/Y\/ v 1" v Ficure 3.1 Heat transfer through a
A TA A plane wall. (a) Temperature distribution.
) (b) Equivalent thermal circuit.

Hence, from Equation 2.2, it follows that, for one-dimensional, steady-state conduction in
a plane wall with no heat generation, the heat ux is a constant, independent of x. If the
thermal conductivity of the wall material is assumed to be constant, the equation may be
integrated twice to obtain the general solution

Tx)=Cx+ C, (3.2)

To obtain the constants of integration, C, and C,, boundary conditions must be introduced.
We choose to apply conditions of the first kind at x = 0 and x = L, in which case

T0)=7,, and T(L)=T,,
Applying the condition at x = O to the general solution, it follows that
I, =G
Similarly, at x = L,
T,,=CL+C,=CL+T,,
in which case

Ts,2 - Ts,l

L G

Substituting into the general solution, the temperature distribution is then

T = (T = To) 7+ T (33)
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From this result it is evident that, for one-dimensional, steady-state conduction in a plane
wall with no heat generation and constant thermal conductivity, the temperature varies
linearly with x.

Now that we have the temperature distribution, we may use Fourier’s law, Equation 2.1,
to determine the conduction heat transfer rate. That is,

dT _ kA
=—kA—=—T,, — T 3.4
qx dx L ( 5,1 s,2) ( )
Note that A is the area of the wall normal to the direction of heat transfer and, for the plane
wall, it is a constant independent of x. The heat flux is then

n q.x k
q, = Z = Z (Ts,l - Ts,2) (35)

Equations 3.4 and 3.5 indicate that both the heat rate ¢, and heat flux ¢} are constants, inde-
pendent of x.

In the foregoing paragraphs we have used the standard approach to solving conduc-
tion problems. That is, the general solution for the temperature distribution is first
obtained by solving the appropriate form of the heat equation. The boundary conditions
are then applied to obtain the particular solution, which is used with Fourier’s law to
determine the heat transfer rate. Note that we have opted to prescribe surface temperatures
atx = 0 and x = L as boundary conditions, even though it is the fluid temperatures, not the
surface temperatures, that are typically known. However, since adjoining fluid and surface
temperatures are easily related through a surface energy balance (see Section 1.3.1), itis a
simple matter to express Equations 3.3 through 3.5 in terms of fluid, rather than surface,
temperatures. Alternatively, equivalent results could be obtained directly by using the sur-
face energy balances as boundary conditions of the third kind in evaluating the constants
of Equation 3.2 (see Problem 3.1).

3.1.2 Thermal Resistance

At this point we note that, for the special case of one-dimensional heat transfer with no
internal energy generation and with constant properties, a very important concept is sug-
gested by Equation 3.4. In particular, an analogy exists between the diffusion of heat and
electrical charge. Just as an electrical resistance is associated with the conduction of elec-
tricity, a thermal resistance may be associated with the conduction of heat. Defining resis-
tance as the ratio of a driving potential to the corresponding transfer rate, it follows from
Equation 3.4 that the thermal resistance for conduction in a plane wall is

Ts,l - Ts,2 L
I il S 4 (3.6)

Similarly, for electrical conduction in the same system, Ohm’s law provides an electrical
resistance of the form

R =—"0 2= (3.7)
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The analogy between Equations 3.6 and 3.7 is obvious. A thermal resistance may also be
associated with heat transfer by convection at a surface. From Newton’s law of cooling,

q=hA(T, = T.) (3.8)

The thermal resistance for convection is then

Rt,conv = e (39)

Circuit representations provide a useful tool for both conceptualizing and quantifying
heat transfer problems. The equivalent thermal circuit for the plane wall with convection
surface conditions is shown in Figure 3.1b. The heat transfer rate may be determined from
separate consideration of each element in the network. Since g, is constant throughout the
network, it follows that

Too,1 - Tvl Tx,l - T;z Ts,2 - Too,z

= - = = = 3.10
E= A LIkA 1/hyA (3.10)
In terms of the overall temperature difference, T, ; — T..», and the fotal thermal resistance,
R, the heat transfer rate may also be expressed as
Too 1 - TOQ 2
G=—"7F (3.11)
Ry

Because the conduction and convection resistances are in series and may be summed, it
follows that

1 L 1
Ry=—"+—+— 3.12
A KA A ©-12)
Radiation exchange between the surface and surroundings may also be important if the
convection heat transfer coefficient is small (as it often is for natural convection in a gas).
A thermal resistance for radiation may be defined by reference to Equation 1.8:

_ Ts - Tsur 1
Rt,rad - Grad - hrA

(3.13)
For radiation between a surface and large surroundings, h, is determined from Equation 1.9.
Surface radiation and convection resistances act in parallel, and if T, = T,, they may be
combined to obtain a single, effective surface resistance.

3.1.3 The Composite Wall

Equivalent thermal circuits may also be used for more complex systems, such as composite
walls. Such walls may involve any number of series and parallel thermal resistances due to
layers of different materials. Consider the series composite wall of Figure 3.2. The one-
dimensional heat transfer rate for this system may be expressed as

Too,l - Too,4

=2l T4 .14
4, SR (3.14)
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Tm’lﬁ
Tor ] T,
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FicURE 3.2  Equivalent thermal circuit for a series composite wall.

where T, ; — T, is the overall temperature difference, and the summation includes all
thermal resistances. Hence

Too,l - Too,4

D= (A + Lalka) + (L lhgA) + (LelkcA) + (1A)] (3.15)

Alternatively, the heat transfer rate can be related to the temperature difference and resis-

tance associated with each element. For example,

Ty~ Ty, _Ty—1T, T,-Ty
(1/h,A) (LalkpA)  (LglkgA)

q: = (3.16)

With composite systems, it is often convenient to work with an overall heat transfer coef-
cient U, which is defined by an expression analogous to Newton’s law of cooling. Accordingly,
q.=UA AT (3.17)

where AT is the overall temperature difference. The overall heat transfer coefficient is related
to the total thermal resistance, and from Equations 3.14 and 3.17 we see that UA = 1/R,,.
Hence, for the composite wall of Figure 3.2,

1 1
U= - (3.18)
RoA  [(1/hy) + (Lalky) + (Lplkg) + (Lc/ke) + (1/hy)]
In general, we may write
AT _ 1
Ry=DR=""=—— (3.19)
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ke(A/2) ke(A/2) ky(AI2)
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Ficure 3.3  Equivalent thermal circuits
(b for a series—parallel composite wall.

Composite walls may also be characterized by series—parallel configurations, such as
that shown in Figure 3.3. Although the heat flow is now multidimensional, it is often reason-
able to assume one-dimensional conditions. Subject to this assumption, two different thermal
circuits may be used. For case (a) it is presumed that surfaces normal to the x-direction are
isothermal, whereas for case (b) it is assumed that surfaces parallel to the x-direction
are adiabatic. Different results are obtained for R, and the corresponding values of
g bracket the actual heat transfer rate. These differences increase with increasing |kz — kg
as multidimensional effects become more significant.

’

3.1.4 Contact Resistance

Although neglected until now, it is important to recognize that, in composite systems, the
temperature drop across the interface between materials may be appreciable. This tempera-
ture change is attributed to what is known as the thermal contact resistance, R, .. The effect
is shown in Figure 3.4, and for a unit area of the interface, the resistance is defined as

T,—T,
Rl =-42_-F (3.20)

1"
X

The existence of a finite contact resistance is due principally to surface roughness effects.
Contact spots are interspersed with gaps that are, in most instances, air filled. Heat transfer is
therefore due to conduction across the actual contact area and to conduction and/or radiation
across the gaps. The contact resistance may be viewed as two parallel resistances: that due to
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FIGURE 3.4 Temperature drop due to
x thermal contact resistance.

the contact spots and that due to the gaps. The contact area is typically small, and, especially
for rough surfaces, the major contribution to the resistance is made by the gaps.

For solids whose thermal conductivities exceed that of the interfacial fluid, the contact
resistance may be reduced by increasing the area of the contact spots. Such an increase may
be effected by increasing the joint pressure and/or by reducing the roughness of the mating
surfaces. The contact resistance may also be reduced by selecting an interfacial fluid of
large thermal conductivity. In this respect, no fluid (an evacuated interface) eliminates con-
duction across the gap, thereby increasing the contact resistance. Likewise, if the character-
istic gap width L becomes small (as, for example, in the case of very smooth surfaces in
contact), L/A g, can approach values for which the thermal conductivity of the interfacial
gas is reduced by microscale effects, as discussed in Section 2.2.

Although theories have been developed for predicting R;,, the most reliable results are
those that have been obtained experimentally. The effect of loading on metallic interfaces
can be seen in Table 3.1a, which presents an approximate range of thermal resistances
under vacuum conditions. The effect of interfacial fluid on the thermal resistance of an alu-
minum interface is shown in Table 3.1b.

Contrary to the results of Table 3.1, many applications involve contact between dissimi-
lar solids and/or a wide range of possible interstitial (filler) materials (Table 3.2). Any intersti-
tial substance that fills the gap between contacting surfaces and whose thermal conductivity
exceeds that of air will decrease the contact resistance. Two classes of materials that are
well suited for this purpose are soft metals and thermal greases. The metals, which include

TABLE 3.1 Thermal contact resistance for (a) metallic interfaces
under vacuum conditions and (b) aluminum interface (10-pum
surface roughness, 10° N/m?) with different interfacial fluids [1]

Thermal Resistance, R}, X 10* (m*-K/W)

(@) Vacuum Interface (b) Interfacial Fluid
Contact pressure 100 kN/m? 10,000 kN/m? Air 2.75
Stainless steel 6-25 0.7-4.0 Helium 1.05
Copper 1-10 0.1-0.5 Hydrogen 0.720
Magnesium 1.5-3.5 0.2-0.4 Silicone oil 0.525

Aluminum 1.5-5.0 0.2-0.4 Glycerine 0.265
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TABLE 3.2 Thermal resistance of representative solid/solid interfaces

Interface R}, X 10* (m*-K/W) Source
Silicon chip/lapped aluminum in air 0.3-0.6 [2]
(27-500 kN/m?)

Aluminum/aluminum with indium foil ~0.07 [1, 3]
filler (~100 kN/m?)

Stainless/stainless with indium foil ~0.04 [1, 3]
filler (~3500 kN/m?)

Aluminum/aluminum with metallic (Pb) 0.01-0.1 [4]
coating

Aluminum/aluminum with Dow Corning ~0.07 [1, 3]
340 grease (~100 kN/m?)

Stainless/stainless with Dow Corning ~0.04 [1, 3]
340 grease (~3500 kN/m?)

Silicon chip/aluminum with 0.02-mm 0.2-0.9 [5]
epoxy

Brass/brass with 15-um tin solder 0.025-0.14 [6]

indium, lead, tin, and silver, may be inserted as a thin foil or applied as a thin coating to one
of the parent materials. Silicon-based thermal greases are attractive on the basis of their abil-
ity to completely fill the interstices with a material whose thermal conductivity is as much as
50 times that of air.

Unlike the foregoing interfaces, which are not permanent, many interfaces involve per-
manently bonded joints. The joint could be formed from an epoxy, a soft solder rich in lead,
or a hard solder such as a gold/tin alloy. Due to interface resistances between the parent and
bonding materials, the actual thermal resistance of the joint exceeds the theoretical value (L/k)
computed from the thickness L and thermal conductivity k of the joint material. The thermal
resistance of epoxied and soldered joints is also adversely affected by voids and cracks, which
may form during manufacture or as a result of thermal cycling during normal operation.

Comprehensive reviews of thermal contact resistance results and models are provided
by Snaith et al. [3], Madhusudana and Fletcher [7], and Yovanovich [8].

3.1.5 Porous Media

In many applications, heat transfer occurs within porous media that are combinations of a sta-
tionary solid and a fluid. When the fluid is either a gas or a liquid, the resulting porous
medium is said to be saturated. In contrast, all three phases coexist in an unsaturated
porous medium. Examples of porous media include beds of powder with a fluid occupying
the interstitial regions between individual granules, as well as the insulation systems and
nanofluids of Section 2.2.1. A saturated porous medium that consists of a stationary solid
phase through which a fluid flows is referred to as a packed bed and is discussed in Section 7.8.

Consider a saturated porous medium that is subjected to surface temperatures 7 at
x =0 and T, at x = L, as shown in Figure 3.5a. After steady-state conditions are reached
and if T, > T, the heat rate may be expressed as

keffA

q. = 2 (1, —T,) (3.21)
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where k. is an effective thermal conductivity. Equation 3.21 is valid if fluid motion, as
well as radiation heat transfer within the medium, are negligible. The effective thermal con-
ductivity varies with the porosity or void fraction of the medium & which is defined as the
volume of fluid relative to the total volume (solid and fluid). In addition, k. depends on
the thermal conductivities of each of the phases and, in this discussion, it is assumed that
ky > k. The detailed solid phase geometry, for example the size distribution and packing
arrangement of individual powder particles, also affects the value of k. Contact resis-
tances that might evolve at interfaces between adjacent solid particles can impact the value
of k.. As discussed in Section 2.2.1, nanoscale phenomena might also influence the effec-
tive thermal conductivity. Hence, prediction of k. can be difficult and, in general, requires
detailed knowledge of parameters that might not be readily available.

Despite the complexity of the situation, the value of the effective thermal conductivity
may be bracketed by considering the composite walls of Figures 3.5b and 3.5¢. In Figure 3.5b,
the medium is modeled as an equivalent, series composite wall consisting of a fluid region of
length eL and a solid region of length (1 — &)L. Applying Equations 3.17 and 3.18 to this model
for which there is no convection (4, = h, = 0) and only two conduction terms, it follows that

AAT

= 3.22
G A= o)Lk, + eLlk, (3.22)
Equating this result to Equation 3.21, we then obtain
1 (3.23)

k L = —
eff,min (1 _ 8)/](5 4 E/kf

Alternatively, the medium of Figure 3.5a could be described by the equivalent, parallel com-
posite wall consisting of a fluid region of width ew and a solid region of width (1 — &)w, as
shown in Figure 3.5¢. Combining Equation 3.21 with an expression for the equivalent
resistance of two resistors in parallel gives

Kegtmax = €k + (1 — &)k, (3.24)

— — A \WN—2 — 0—/\/\/\’—0—’\/\/»—%
T T 1 2
4. 2 G 1-gL el
kA kA
kegtA : r
(a) (b)

Ficure 3.5 A porous medium. (a) The medium and its properties. (b) Series thermal resistance
representation. (c) Parallel resistance representation.
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While Equations 3.23 and 3.24 provide the minimum and maximum possible values of
k., more accurate expressions have been derived for specific composite systems within
which nanoscale effects are negligible. Maxwell [9] derived an expression for the effective
electrical conductivity of a solid matrix interspersed with uniformly distributed, noncon-
tacting spherical inclusions. Noting the analogy between Equations 3.6 and 3.7, Maxwell’s
result may be used to determine the effective thermal conductivity of a saturated porous
medium consisting of an interconnected solid phase within which a dilute distribution of
spherical fluid regions exists, resulting in an expression of the form [10]

ket 2k — 260 — k|
] ket 2k + ek, — k) [

(3.25)

Equation 3.25 is valid for relatively small porosities (& < 0.25) as shown schematically in
Figure 3.5a [11]. It is equivalent to the expression introduced in Example 2.2 for a fluid
that contains a dilute mixture of solid particles, but with reversal of the fluid and solid.

When analyzing conduction within porous media, it is important to consider the poten-
tial directional dependence of the effective thermal conductivity. For example, the media
represented in Figure 3.5b or Figure 3.5¢ would not be characterized by isotropic proper-
ties, since the effective thermal conductivity in the x-direction is clearly different from val-
ues of k. in the vertical direction. Hence, although Equations 3.23 and 3.24 can be used to
bracket the actual value of the effective thermal conductivity, they will generally overpre-
dict the possible range of k.4 for isotropic media. For isotropic media, expressions have
been developed to determine the minimum and maximum possible effective thermal con-
ductivities based solely on knowledge of the porosity and the thermal conductivities of the
solid and fluid. Specifically, the maximum possible value of k. in an isotropic porous
medium is given by Equation 3.25, which corresponds to an interconnected, high thermal
conductivity solid phase. The minimum possible value of k. for an isotropic medium corre-
sponds to the case where the fluid phase forms long, randomly oriented fingers within the
medium [12]. Additional information regarding conduction in saturated porous media is
available [13].

Iy | ExampPLE 3.1

In Example 1.7, we calculated the heat loss rate from a human body in air and water envi-
ronments. Now we consider the same conditions except that the surroundings (air or water)
are at 10°C. To reduce the heat loss rate, the person wears special sporting gear (snow suit
and wet suit) made from a nanostructured silica aerogel insulation with an extremely low
thermal conductivity of 0.014 W/m - K. The emissivity of the outer surface of the snow and
wet suits is 0.95. What thickness of aerogel insulation is needed to reduce the heat loss rate
to 100 W (a typical metabolic heat generation rate) in air and water? What are the resulting
skin temperatures?

SOLUTION

|

Known: Inner surface temperature of a skin/fat layer of known thickness, thermal con-
ductivity, and surface area. Thermal conductivity and emissivity of snow and wet suits.
Ambient conditions.
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Find: Insulation thickness needed to reduce heat loss rate to 100 W and corresponding
skin temperature.

Schematic:
° £=0.95
T;=35C T, T,, = 10°C—
Skin/fat Insulation
king = 0.014 W/m-K
kg = 0.3 W/im-K
T, =10°C
h =2 W/m?K (Air)
h =200 W/m?-K (Water)
%Lsf:3 mm —>fe— Lms"‘ T T T
Air or
water
Assumptions:

1. Steady-state conditions.
One-dimensional heat transfer by conduction through the skin/fat and insulation layers.
Contact resistance is negligible.

Thermal conductivities are uniform.

Radiation exchange between the skin surface and the surroundings is between a small
surface and a large enclosure at the air temperature.

&

Liquid water is opaque to thermal radiation.
7. Solar radiation is negligible.

8. Body is completely immersed in water in part 2.

Analysis:  The thermal circuit can be constructed by recognizing that resistance to heat
flow is associated with conduction through the skin/fat and insulation layers and convection
and radiation at the outer surface. Accordingly, the circuit and the resistances are of the fol-
lowing form (with i, = 0 for water):

sur= T

The total thermal resistance needed to achieve the desired heat loss rate is found from
Equation 3.19,
T,— T, (35—-10)K
R = =

q 100 W

= 0.25 K/'W

The total thermal resistance between the inside of the skin/fat layer and the cold sur-
roundings includes conduction resistances for the skin/fat and insulation layers and an
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effective resistance associated with convection and radiation, which act in parallel.
Hence,

R _ Lsf + Lins + 1 + 1 ! _ 1 Lsf + Lins + 1
tot - 4\
kA kg A \1/hA  1hA A\ky  k,, h+h

This equation can be solved for the insulation thickness.

Air

The radiation heat transfer coefficient is approximated as having the same value as in
Example 1.7: h, = 5.9 W/m*-K.

L%f 1
L.=k |AR, — — —
ns Ins|: tot ksf h + hr:|
3X 103 m 1
=0.014 W/m-K| 1.8 m*> X 0.25 K/W — —
[ 03W/m-K (2+5.9) Wm?- K]
=0.0044 m = 4.4 mm <
Water
L%f 1
L=k |AR ., ————
ns Ins|: tot ksf h:|
3X 103 m 1
=0.014 W/m-K| 1.8 m*> X 0.25 K/W — —
m [ - 0.3W/m-K 200 W/m?- K]
=0.0061 m = 6.1 mm <

These required thicknesses of insulation material can easily be incorporated into the snow
and wet suits.
The skin temperature can be calculated by considering conduction through the skin/fat
layer:
_ kgA(T, — T
Lsf

or solving for T,

L -3
T:T_q §f=350C_100W><3><10 m

s i = 344OC <
‘ kyA 0.3 W/m-K X 1.8 m?

The skin temperature is the same in both cases because the heat loss rate and skin/fat proper-
ties are the same.

Comments:

1. The nanostructured silica aerogel is a porous material that is only about 5% solid. Its
thermal conductivity is less than the thermal conductivity of the gas that fills its pores.
As explained in Section 2.2, the reason for this seemingly impossible result is that the
pore size is only around 20 nm, which reduces the mean free path of the gas and hence
decreases its thermal conductivity.



124

Chapter 3 ®m One-Dimensional, Steady-State Conduction

2. By reducing the heat loss rate to 100 W, a person could remain in the cold environ-

ments indefinitely without becoming chilled. The skin temperature of 34.4°C would
feel comfortable.

. In the water case, the thermal resistance of the insulation dominates and all other resis-

tances can be neglected.

. The convection heat transfer coefficient associated with the air depends on the wind

conditions, and it can vary over a broad range. As it changes, so will the outer surface
temperature of the insulation layer. Since the radiation heat transfer coefficient depends
on this temperature, it will also vary. We can perform a more complete analysis that takes
this into account. The radiation heat transfer coefficient is given by Equation 1.9:

h, = e0(T,, + Tu)(T5, + Ta) 1
Here T, is the outer surface temperature of the insulation layer, which can be calcu-
lated from
Ly Ly
T,,=T,—q|l — +-—— 2
so = T q[km4 &MA] 2)

Since this depends on the insulation thickness, we also need the previous equation
for Ly,

Lms=km<ARm—L“— 1 ) 3)
k., h+h

S

With all other values known, these three equations can be solved for the required
insulation thickness. Using all the values from above, these equations have been
solved for values of / in the range 0 = h = 100 W/m”- K, and the results are repre-
sented graphically.

L, (mm)
o1

3

0 10 20 30 40 50 60 70 80 90 100
h (W/m2-K)

Increasing % reduces the corresponding convection resistance, which then requires
additional insulation to maintain the heat transfer rate at 100 W. Once the heat transfer
coefficient exceeds approximately 60 W/m?- K, the convection resistance is negligible
and further increases in & have little effect on the required insulation thickness.
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The outer surface temperature and radiation heat transfer coefficient can also be
calculated. As & increases from 0 to 100 W/m*-K, T, decreases from 294 to 284 K,
while h, decreases from 5.2 to 4.9 W/m?-K. The initial estimate of #, = 5.9 W/m?:K
was not highly accurate. Using this more complete model of the radiation heat
transfer, with # = 2 W/m?-K, the radiation heat transfer coefficient is 5.1 W/m?- K,
and the required insulation thickness is 4.2 mm, close to the value calculated in the
first part of the problem.

5. See Example 3.1 in /HT. This problem can also be solved using the thermal resistance
network builder, Models/Resistance Networks, available in IHT.

ExXAMPLE 3.2

A thin silicon chip and an 8-mm-thick aluminum substrate are separated by a 0.02-mm-thick
epoxy joint. The chip and substrate are each 10 mm on a side, and their exposed surfaces are
cooled by air, which is at a temperature of 25°C and provides a convection coefficient of
100 W/m? - K. If the chip dissipates 10* W/m? under normal conditions, will it operate below a
maximum allowable temperature of 85°C?

SOLUTION

Known: Dimensions, heat dissipation, and maximum allowable temperature of a silicon
chip. Thickness of aluminum substrate and epoxy joint. Convection conditions at exposed chip
and substrate surfaces.

Find: Whether maximum allowable temperature is exceeded.

Schematic:
q1
— .
-~ T,=25C T
~ 7= 100 W/m?K T
, Insulation 1
Silicon chipﬁ T_‘h Jﬁ q" h BT
ST | R ¢ ‘g e
e R = Ry,
Epoxy joint———=— i '
(0.02mm) ' a i T L
L=8mm i
Aluminum B ifi
substrate z 1
n
— 5 T,
- T,=25C
» =100 W/m=K
92
Assumptions:

1. Steady-state conditions.
2. One-dimensional conduction (negligible heat transfer from sides of composite).

w

Negligible chip thermal resistance (an isothermal chip).

=

Constant properties.

o

Negligible radiation exchange with surroundings.
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Properties: Table A.1, pure aluminum (7 ~ 350 K): £k = 239 W/m-K.

Analysis: Heat dissipated in the chip is transferred to the air directly from the exposed
surface and indirectly through the joint and substrate. Performing an energy balance on a
control surface about the chip, it follows that, on the basis of a unit surface area,

9=4q1+ 4
or
" TC B T°° TC - TOO
qc = + —
(1/h) R, .+ (Llk) + (1/h)

To conservatively estimate 7, the maximum possible value of R/, = 0.9 X 107* m>- K/W
is obtained from Table 3.2. Hence

-1
T,=Totq|ht -t
R, + (LK) + (1/h)

or
T. = 25°C + 10* W/m?

1
(0.9 +0.33 + 100) X 10~

T,=25°C +50.3°C =75.3°C <

-1
X [100-+ 4] m?- K/W

Hence the chip will operate below its maximum allowable temperature.

Comments:

1. The joint and substrate thermal resistances are much less than the convection resistance.
The joint resistance would have to increase to the unrealistically large value of 50 X 10~*
m?*- K /W, before the maximum allowable chip temperature would be exceeded.

2. The allowable power dissipation may be increased by increasing the convection coeffi-
cients, either by increasing the air velocity and/or by replacing the air with a more
effective heat transfer fluid. Exploring this option for 100 < & = 2000 W/m?-K with
T, = 85°C, the following results are obtained.

2.5

— N
] o

—_
o

g x 107° (W/m?)

0.5

0 500 1000 1500 2000
h (W/m2-K)

As h— o, g5 — 0 and virtually all of the chip power is transferred directly to the fluid
stream.
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3. As calculated, the difference between the air temperature (7, = 25°C) and the chip
temperature (7, = 75.3°C) is 50.3 K. Keep in mind that this is a temperature difference
and therefore is the same as 50.3°C.

4. Consider conditions for which airflow over the chip (upper) or substrate (lower) surface
ceases due to a blockage in the air supply channel. If heat transfer from either surface is
negligible, what are the resulting chip temperatures for g/ = 10* W/m*? [Answer, 126°C
or 125°C]

_

ExAmPLE 3.3

A photovoltaic panel consists of (top to bottom) a 3-mm-thick ceria-doped glass (k, = 1.4
W/m-K), a 0.1-mm-thick optical grade adhesive (k, = 145 W/m-K), a very thin layer of sili-
con within which solar energy is converted to electrical energy, a 0.1-mm-thick solder layer
(kg = 50 W/m*+K), and a 2-mm-thick aluminum nitride substrate (k,, = 120 W/m-K). The
solar-to-electrical conversion efficiency within the silicon layer n decreases with increasing
silicon temperature, Ty, and is described by the expression n = a — bT,;, where a = 0.553 and
b =0.001 K~!. The temperature T is expressed in kelvins over the range 300K = T, <
525 K. Of the incident solar irradiation, G = 700 W/m?, 7% is reflected from the top surface
of the glass, 10% is absorbed at the top surface of the glass, and 83% is transmitted to and
absorbed within the silicon layer. Part of the solar irradiation absorbed in the silicon is con-
verted to thermal energy, and the remainder is converted to electrical energy. The glass has
an emissivity of ¢ = 0.90, and the bottom as well as the sides of the panel are insulated.
Determine the electric power P produced by an L = 1-m-long, w = 0.1-m-wide solar panel
for conditions characterized by 4 = 35 W/m?*-Kand T,, = T.,. = 20°C.

sur

— > T_=20°C

Ar T h=35Wm2K Ty, = 20°C
[P L] Jo-roowms

| Glass 2 =3

’ » L,=3mm

rAdhesive’—Silicon layer ¢ 4L,=0.1mm

e P JE=mm——
Electric -] 3
o) Solder Substrate} - Lyy=2mm' Lg=0.1 mm

power to
grid, P A

- RN

L=1m

SOLUTION

I

Known: Dimensions and materials of a photovoltaic solar panel. Material properties,
solar irradiation, convection coefficient and ambient temperature, emissivity of top panel
surface and surroundings temperature. Partitioning of the solar irradiation, and expression
for the solar-to-electrical conversion efficiency.

Find: Electric power produced by the photovoltaic panel.
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Schematic:
Yrad T T 9conv
T
; < _ 209, T, = 20°C
Solar irradiation Air —» 1.=20°C ) sur ﬁ %
G =700 W/m2 —» h=35W/m2.K Lw w
\f 0.07G (reflected) 0.10GLw —Q)}
L
_';
0.10G (absorbed at surface) _
Glass L,=3mm '
Adhesive l l L,
= =%k,Lw
Silicon layer ———= %0 0.83GLw ——>O—> 0.83nGLw
T,
Assumptions:

1. Steady-state conditions.
One-dimensional heat transfer.
Constant properties.

Negligible thermal contact resistances.

ok wmbd

Negligible temperature differences within the silicon layer.

Analysis:  Recognize that there is no heat transfer to the bottom insulated surface of the
solar panel. Hence, the solder layer and aluminum nitride substrate do not affect the solu-
tion, and all of the solar energy absorbed by the panel must ultimately leave the panel in the
form of radiation and convection heat transfer from the top surface of the glass, and electric
power to the grid, P = 10.83 GLw. Performing an energy balance on the node associated
with the silicon layer yields

Tsi - Tg,top
0.83 GLw — 10.83 GLw =
L, L,
kJLw  k,Lw

Substituting the expression for the solar-to-electrical conversion efficiency and simplifying
leads to
Tsi - Tg,top

0.83G(1 —a+bTy) =—— (1
44 %
k, k,
Performing a second energy balance on the node associated with the top surface of the
glass gives

0.83 GLw(1 = m) + 0.1 GLw = hLw(T0p — T.) + £0Lw(Tg0p — Tor)
Substituting the expression for the solar-to-electrical conversion efficiency into the preced-
ing equation and simplifying provides

0.83G(1 —a+bTy) +0.1G =Ty — Too) + £0(Ty0p — Tat) )

Jtop
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Finally, substituting known values into Equations 1 and 2 and solving simultaneously yields
T, = 307K = 34°C, providing a solar-to-electrical conversion efficiency of n = 0.553 —
0.001 K™' X 307 K = 0.247. Hence, the power produced by the photovoltaic panel is

P =10.83GLw = 0.247 X 0.83 X 700 W/m?* X 1m X 0.1 m = 143 W <

Comments:

1. The correct application of the conservation of energy requirement is crucial to deter-
mining the silicon temperature and the electric power. Note that solar energy is con-
verted to both thermal and electrical energy, and the thermal circuit is used to quantify
only the thermal energy transfer.

2. Because of the thermally insulated boundary condition, it is not necessary to include
the solder or substrate layers in the analysis. This is because there is no conduction
through these materials and, from Fourier’s law, there can be no temperature gradients
within these materials. At steady state, Ty, = T,y = T.

e

3. As the convection coefficient increases, the temperature of the silicon decreases. This
leads to a higher solar-to-electrical conversion efficiency and increased electric power
output. Similarly, higher silicon temperatures and less power production are associated
with smaller convection coefficients. For example, P = 13.6 W and 14.6 W for
h =15 W/m?*-K and 55 W/m?- K, respectively.

4. The cost of a photovoltaic system can be reduced significantly by concentrating the
solar energy onto the relatively expensive photovoltaic panel using inexpensive focus-
ing mirrors or lenses. However, good thermal management then becomes even more
important. For example, if the irradiation supplied to the panel were increased to
G = 7,000 W/m? through concentration, the conversion efficiency drops to n = 0.160
as the silicon temperature increases to T,; = 119°C, even for 1 = 55 W/m?+ K. A key to
reducing the cost of photovoltaic power generation is developing innovative cooling
technologies for use in concentrating photovoltaic systems.

5. The simultaneous solution of Equations 1 and 2 may be achieved by using IHT,
another commercial code, or a handheld calculator. A trial-and-error solution could
also be obtained, but with considerable effort. Equations 1 and 2 could be combined to
write a single transcendental expression for the silicon temperature, but the equation
must still be solved numerically or by trial-and-error.

_

EXAMPLE 3.4

The thermal conductivity of a D = 14-nm-diameter carbon nanotube is measured with an
instrument that is fabricated of a wafer of silicon nitride at a temperature of 7,, = 300 K. The
20-pm-long nanotube rests on two 0.5-um-thick, 10 wm X 10 wm square islands that are
separated by a distance s = 5 um. A thin layer of platinum is used as an electrical resistor on
the heated island (at temperature T,) to dissipate ¢ = 11.3 uW of electrical power. On the
sensing island, a similar layer of platinum is used to determine its temperature, 7,. The plat-
inum’s electrical resistance, R(7,) = E/I, is found by measuring the voltage drop and elec-
trical current across the platinum layer. The temperature of the sensing island, T, is then
determined from the relationship of the platinum electrical resistance to its temperature.
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Each island is suspended by two L, = 250-pum-long silicon nitride beams that are w,, = 3 um
wide and 7, = 0.5 um thick. A platinum line of width w,, = 1 um and thickness 7, = 0.2 wm
is deposited within each silicon nitride beam to power the heated island or to detect the
voltage drop associated with the determination of 7,. The entire experiment is performed in
a vacuum with T, = 300K and at steady state, 7, = 308.4 K. Estimate the thermal con-
ductivity of the carbon nanotube.
SOLUTION
I
Known: Dimensions, heat dissipated at the heated island, and temperatures of the sensing
island and surrounding silicon nitride wafer.
Find: The thermal conductivity of the carbon nanotube.
Schematic:
T, =300 K
Carbon nanotube
D=14nm
Sensing island 7,=308.4 K
Heated
island / /
Th
o
m
s, — 1 2
7 —/ /=10 i 15r=0.2 pm
on =250 pim ¢ . ‘ ey = 1 pm
t,=0.5 pm
7 ST Z .
e—— wg, =3 pm —>
Silicon nitride block
7. =300K
Assumptions:
1. Steady-state conditions.
2. One-dimensional heat transfer.
3. The heated and sensing islands are isothermal.
4. Radiation exchange between the surfaces and the surroundings is negligible.
5. Negligible convection losses.
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6. Ohmic heating in the platinum signal lines is negligible.
7. Constant properties.
8. Negligible contact resistance between the nanotube and the islands.

Properties: Table A.1, platinum (325 K, assumed): ky = 71.6 W/m-K. Table A.2, silicon
nitride (325 K, assumed): kg, = 15.5 W/m-K.

Analysis:  Energy that is dissipated at the heated island is transferred to the silicon nitride
block through the support beams of the heated island, the carbon nanotube, and subse-
quently through the support beams of the sensing island. Therefore, the thermal circuit may
be constructed as follows

th/ 2 qu/ 2
T, T,
Rr,sup Rt,sup
T,
I A :
kenAen
Rr.sup Rt,sup
T, T,
*qh/ 2 i%'/ 2

where each supporting beam provides a thermal resistance R, that is composed of a resis-
tance due to the silicon nitride (sn) in parallel with a resistance due to the platinum (pt) line.
The cross-sectional areas of the materials in the support beams are

Ay =wyty = (1 X107m) X (0.2 X 10m) =2 X 10~ m?

A = Waly — Ay =(3X107°m) X (0.5 X 10 °m) =2 X 10 P m*= 1.3 X 10" m’

while the cross-sectional area of the carbon nanotube is
A, = wD4 = w(14 X 107" m)*/4 = 1.54 X 107 '* m?

The thermal resistance of each support is

kptApt ksnAsn -1
Rt,sup = +
Ly L,

250 X 10 °m 250 X 10 °m
=7.25 X 10° K/IW

_ [71.6 W/m-K X 2x 10" m? , 15.5 W/m-K X 13X 10" m2]1

The combined heat loss through both sensing island supports is
qs = 2T, = T.)IR, 5, = 2 X (308.4 K — 300 K)/(7.25 X 10°K/W)
=232X107°W =232 uW
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It follows that
=9 —q,= 113 uW — 2.32 uW = 8.98 uW

and 7}, attains a value of

-6 6
T, =T, + %tht,sup — 300K + 898 X 107° W ><27.25 X10°K/W _ 3326 K
For the portion of the thermal circuit connecting 7), and T,
_ Th - Ts
B Sl

from which

(o= 45 232X 107 °W X 5X10"°m

“AWT, = T) 154X 107°m? X (332.6 K — 308.4 K)

ke, = 3113 W/m-K <

Comments:

1. The measured thermal conductivity is extremely large, as evident by comparing its
value to the thermal conductivities of pure metals shown in Figure 2.4. Carbon nano-
tubes might be used to dope otherwise low thermal conductivity materials to improve
heat transfer.

2. Contact resistances between the carbon nanotube and the heated and sensing islands
were neglected because little is known about such resistances at the nanoscale. How-
ever, if a contact resistance were included in the analysis, the measured thermal con-
ductivity of the carbon nanotube would be even higher than the predicted value.

3. The significance of radiation heat transfer may be estimated by approximating the
heated island as a blackbody radiating to T, from both its top and bottom surfaces.
Hence, gyq), = 5.67 X 107* W/m?-K* X 2 X (10 X 10~°m)* X (332.6* — 300H)K* =
4.7 X 10" W = 0.047 uW, and radiation is negligible.

F

3.2 An Alternative Conduction Analysis

The conduction analysis of Section 3.1 was performed using the standard approach. That is,
the heat equation was solved to obtain the temperature distribution, Equation 3.3, and Fourier’s
law was then applied to obtain the heat transfer rate, Equation 3.4. However, an alternative
approach may be used for the conditions presently of interest. Considering conduction in the
system of Figure 3.6, we recognize that, for steady-state conditions with no heat generation
and no heat loss from the sides, the heat transfer rate ¢, must be a constant independent of x.
That is, for any differential element dx, g, = ¢, 4. This condition is, of course, a consequence
of the energy conservation requirement, and it must apply even if the area varies with position
A(x) and the thermal conductivity varies with temperature k(7). Moreover, even though
the temperature distribution may be two-dimensional, varying with x and y, it is often reason-
able to neglect the y-variation and to assume a one-dimensional distribution in x.

For the above conditions it is possible to work exclusively with Fourier’s law when
performing a conduction analysis. In particular, since the conduction rate is a constant, the
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Insulation

Adiabatic—
surface :7y

FIGURE 3.6  System with a constant
conduction heat transfer rate.

rate equation may be integrated, even though neither the rate nor the temperature distribution
is known. Consider Fourier’s law, Equation 2.1, which may be applied to the system of
Figure 3.6. Although we may have no knowledge of the value of ¢, or the form of 7(x), we
do know that ¢, is a constant. Hence we may express Fourier’s law in the integral form

Y [Turyar (3.26
.26)

“law - )y

The cross-sectional area may be a known function of x, and the material thermal conductivity
may vary with temperature in a known manner. If the integration is performed from a point x;,
at which the temperature 7|, is known, the resulting equation provides the functional form of
T(x). Moreover, if the temperature 7 = T at some x = x, is also known, integration between
X, and x; provides an expression from which g, may be computed. Note that, if the area A is
uniform and k is independent of temperature, Equation 3.26 reduces to

q. Ax

= —kAT (3.27)

where Ax = x; — xpand AT =T, - T,,.

We frequently elect to solve diffusion problems by working with integrated forms of
the diffusion rate equations. However, the limiting conditions for which this may be done
should be firmly fixed in our minds: steady-state and one-dimensional transfer with no heat
generation.

EXAMPLE 3.5

The diagram shows a conical section fabricated from pyroceram. It is of circular cross
section with the diameter D = ax, where a = 0.25. The small end is at x; = 50 mm and the
large end at x, = 250 mm. The end temperatures are 7, = 400 K and 7, = 600 K, while
the lateral surface is well insulated.

T,
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1. Derive an expression for the temperature distribution 7(x) in symbolic form, assuming
one-dimensional conditions. Sketch the temperature distribution.

2. Calculate the heat rate g, through the cone.

SOLUTION

Known: Conduction in a circular conical section having a diameter D = ax, where
a=0.25.

Find:
1. Temperature distribution 7(x).
2. Heat transfer rate ¢,.

Schematic:

Pyroceram X

Assumptions:
1. Steady-state conditions.
2. One-dimensional conduction in the x-direction.
3. No internal heat generation.

4. Constant properties.

Properties: Table A.2, pyroceram (500 K): k = 3.46 W/m* K.

Analysis:
1. Since heat conduction occurs under steady-state, one-dimensional conditions with no
internal heat generation, the heat transfer rate ¢, is a constant independent of x. Accord-
ingly, Fourier’s law, Equation 2.1, may be used to determine the temperature distribution

ar
= AL
qx dx

where A = 7D?/4 = ma’x*/4. Separating variables,

4q.d
2 = —kar
mTax

Integrating from x, to any x within the cone, and recalling that ¢, and k are constants, it
follows that

Aa, [tdx _ (7 r

’lT(l2 X )C2 T,
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Hence

or solving for T

44,
T =T, —2 (%—l)

wa’k

Although g, is a constant, it is as yet an unknown. However, it may be determined by
evaluating the above expression at x = x,, where 7(x,) = T,. Hence

49 (11
nL=T ma’k (x, x2>

and solving for ¢,

_ ma*k(T, — T,)
A4[(1/xy) — (1/x,)]

qx

Substituting for g, into the expression for 7(x), the temperature distribution becomes

(1/x) — (1/x1)] -

T(x) = Tl + (Tl B T2) |:(1/x1) — (l/xZ)

From this result, temperature may be calculated as a function of x and the distribution
is as shown.

T,

T(x)

Ty

Vv

X2 X1
X

Note that, since dT/dx = —4q /kma*x* from Fourier’s law, it follows that the tempera-
ture gradient and heat flux decrease with increasing x.

Substituting numerical values into the foregoing result for the heat transfer rate, it
follows that
m(0.25)* X 3.46 W/m - K (400 — 600) K
= = —212W <
@ 4 (1/0.05m — 1/0.25 m)

Comments: When the parameter a increases, the cross-sectional area changes more
rapidly with distance, causing the one-dimensional assumption to become less appropriate.
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3.3 Radial Systems

Cylindrical and spherical systems often experience temperature gradients in the radial direc-
tion only and may therefore be treated as one-dimensional. Moreover, under steady-state
conditions with no heat generation, such systems may be analyzed by using the standard
method, which begins with the appropriate form of the heat equation, or the alternative
method, which begins with the appropriate form of Fourier’s law. In this section, the cylin-
drical system is analyzed by means of the standard method and the spherical system by
means of the alternative method.

3.3.1 The Cylinder

A common example is the hollow cylinder whose inner and outer surfaces are exposed to
fluids at different temperatures (Figure 3.7). For steady-state conditions with no heat gener-
ation, the appropriate form of the heat equation, Equation 2.26, is

1 d(,.dT)_
o <kr ) =0 (3.28)

where, for the moment, k is treated as a variable. The physical significance of this result
becomes evident if we also consider the appropriate form of Fourier’s law. The rate at which
energy is conducted across any cylindrical surface in the solid may be expressed as

) (3.29)
dr dr

where A = 27rL is the area normal to the direction of heat transfer. Since Equation 3.28
dictates that the quantity kr(d7/dr) is independent of r, it follows from Equation 3.29
that the conduction heat transfer rate q, (not the heat flux g;) is a constant in the radial
direction.

Hot fluid
T,y

Cold fluid T, |-
Tl / / :

N>

r r
r
TM,l Tc,l Tv,Z TM,Z
d a,—> N \N—ANVVVN—AN\—»
T,, 1 In(ryfry) 1
h2mrL 2 kL hy2 wryL

Ficure 3.7  Hollow cylinder with convective surface conditions.
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We may determine the temperature distribution in the cylinder by solving Equation
3.28 and applying appropriate boundary conditions. Assuming the value of k to be constant,
Equation 3.28 may be integrated twice to obtain the general solution

T(r) = C/Inr+ G, (3.30)

To obtain the constants of integration C; and C,, we introduce the following boundary
conditions:

T(rl) = Ts,l and T(r2) = Ts,2
Applying these conditions to the general solution, we then obtain
I,,=C/lnry+C, and T,=C/lnr,+GC,

Solving for C; and C, and substituting into the general solution, we then obtain

Ty = L2y (r) (3.31)
ln (rl/rz) r2 5,2 ’

Note that the temperature distribution associated with radial conduction through a cylindri-
cal wall is logarithmic, not linear, as it is for the plane wall under the same conditions. The
logarithmic distribution is sketched in the inset of Figure 3.7.

If the temperature distribution, Equation 3.31, is now used with Fourier’s law, Equation
3.29, we obtain the following expression for the heat transfer rate:

20K, — T,y)

In (ry/ry) (3.32)

q-

From this result it is evident that, for radial conduction in a cylindrical wall, the thermal
resistance is of the form

. In (r,/ry)

R = 3.33
t,cond 2Lk ( )

This resistance is shown in the series circuit of Figure 3.7. Note that since the value of ¢, is
independent of r, the foregoing result could have been obtained by using the alternative
method, that is, by integrating Equation 3.29.

Consider now the composite system of Figure 3.8. Recalling how we treated the com-
posite plane wall and neglecting the interfacial contact resistances, the heat transfer rate
may be expressed as

Too 1 Toc 4
q.= : : (3.34)
1 n In(r,/r)) n In(r3/r,) N In(ry4/r3) N 1

27rrLh, 2k, L 2akgL 2wkcL 2r,Lhy

The foregoing result may also be expressed in terms of an overall heat transfer coefficient.
That is,

- T,
T = UA(Ty — Tad) (3.35)

qr =
Ry
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Ty

1 In(ry/ry) In(rafry) — In(ry/rs) 1

h2nrL 2m kpL 21 kgL 2m koL hy2mr,L

FIGURE 3.8 Temperature distribution for a composite cylindrical wall.

If U is defined in terms of the inside area, A, = 27r,L, Equations 3.34 and 3.35 may be
equated to yield

1
U, = (3.36)
1 n. . n_ no s, nnonl
hl+kA1nrl+kBlnr2+kclnr3+r4h4

This definition is arbitrary, and the overall coefficient may also be defined in terms of A, or
any of the intermediate areas. Note that

UA, = UA, = UA; = UA, = (SR)™! (3.37)

and the specific forms of U,, Us;, and U, may be inferred from Equations 3.34 and 3.35.

EXAMPLE 3.6

The possible existence of an optimum insulation thickness for radial systems is suggested
by the presence of competing effects associated with an increase in this thickness. In partic-
ular, although the conduction resistance increases with the addition of insulation, the con-
vection resistance decreases due to increasing outer surface area. Hence there may exist an
insulation thickness that minimizes heat loss by maximizing the total resistance to heat
transfer. Resolve this issue by considering the following system.
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1. A thin-walled copper tube of radius r; is used to transport a low-temperature refrigerant
and is at a temperature 7 that is less than that of the ambient air at 7, around the tube.
Is there an optimum thickness associated with application of insulation to the tube?

2. Confirm the above result by computing the total thermal resistance per unit length of
tube for a 10-mm-diameter tube having the following insulation thicknesses: 0, 2, 5,
10, 20, and 40 mm. The insulation is composed of cellular glass, and the outer surface
convection coefficient is 5 W/m*- K.

SOLUTION
|

Known: Radius r; and temperature 7; of a thin-walled copper tube to be insulated from
the ambient air.

Find:
1. Whether there exists an optimum insulation thickness that minimizes the heat transfer
rate.

2. Thermal resistance associated with using cellular glass insulation of varying thickness.

Schematic:
T,
h =5 W/m?K
T. Air
Insulation, k&
Assumptions:

1. Steady-state conditions.
2. One-dimensional heat transfer in the radial (cylindrical) direction.

w

Negligible tube wall thermal resistance.

&

Constant properties for insulation.

4

Negligible radiation exchange between insulation outer surface and surroundings.
Properties: Table A.3, cellular glass (285 K, assumed): £k = 0.055 W/m-K.

Analysis:

1. The resistance to heat transfer between the refrigerant and the air is dominated by con-
duction in the insulation and convection in the air. The thermal circuit is therefore

T, .
q'e—— o ANMM—OANMAN—
In(r/r;) 1
2k 2rrh

where the conduction and convection resistances per unit length follow from Equations
3.33 and 3.9, respectively. The total thermal resistance per unit length of tube is then

, In (r/r;) 1
tot — +
21k 27rh
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where the rate of heat transfer per unit length of tube is

T.—T,
Rl

!

q:

An optimum insulation thickness would be associated with the value of r that minimized
q' or maximized R;,. Such a value could be obtained from the requirement that

dRiy,
7:()
dr
Hence
1 1 -0
2mwkr  27rh
or
,_k
h

To determine whether the foregoing result maximizes or minimizes the total resis-
tance, the second derivative must be evaluated. Hence

dRou_ 1 1

dr? 2mwkr? wrih

or, at r = k/h,

Ry _ 1 (1_1>= Ly
dr* wkim? \k  2k) " 2mkin?

Since this result is always positive, it follows that » = k/h is the insulation radius for
which the total resistance is a minimum, not a maximum. Hence an optimum insulation
thickness does not exist.
From the above result it makes more sense to think in terms of a critical insulation
radius
Lok
cr h

which maximizes heat transfer, that is, below which ¢’ increases with increasing r and
above which ¢’ decreases with increasing r.

2. With 4 = 5 W/m?-K and k = 0.055 W/m-K, the critical radius is

_ 0.055W/m-K _

SWime- K 0.0I1m
m? -

cr

Hence r.. > r; and heat transfer will increase with the addition of insulation up to a
thickness of

7o — ;= (0.011 — 0.005)m = 0.006 m
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The thermal resistances corresponding to the prescribed insulation thicknesses may be
calculated and are plotted as follows:

8
Rt
6
= i ,
; | R cond
B [
et |
& |
R’COHV
2 I
|
|
|
|
0 ]
0 6 10 20 30 40 50
r—r; (mm)

Comments:

1. The effect of the critical radius is revealed by the fact that, even for 20 mm of insula-
tion, the total resistance is not as large as the value for no insulation.

2. If r; <r,, as it is in this case, the total resistance decreases and the heat rate therefore
increases with the addition of insulation. This trend continues until the outer radius of
the insulation corresponds to the critical radius. The trend is desirable for electrical
current flow through a wire, since the addition of electrical insulation would aid in
transferring heat dissipated in the wire to the surroundings. Conversely, if r; > r,, any
addition of insulation would increase the total resistance and therefore decrease the
heat loss. This behavior would be desirable for steam flow through a pipe, where insu-

lation is added to reduce heat loss to the surroundings.

3. For radial systems, the problem of reducing the total resistance through the application of
insulation exists only for small diameter wires or tubes and for small convection coeffi-
cients, such that r.. > r;. For a typical insulation (k = 0.03 W/m-K) and free convection
in air (h = 10 W/m?:K), r, = (k/h) = 0.003 m. Such a small value tells us that, normally,
r; > r, and we need not be concerned with the effects of a critical radius.

4. The existence of a critical radius requires that the heat transfer area change in the direction
of transfer, as for radial conduction in a cylinder (or a sphere). In a plane wall the area per-
pendicular to the direction of heat flow is constant and there is no critical insulation thick-
ness (the total resistance always increases with increasing insulation thickness).

F

3.3.2 The Sphere

Now consider applying the alternative method to analyzing conduction in the hollow sphere
of Figure 3.9. For the differential control volume of the figure, energy conservation requires
that ¢, = ¢, for steady-state, one-dimensional conditions with no heat generation. The
appropriate form of Fourier’s law is

dT ar

6= —kA "= —kdmr) (3.38)

where A = 4772 is the area normal to the direction of heat transfer.
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Ficure 3.9  Conduction in a spherical shell.

Acknowledging that g, is a constant, independent of r, Equation 3.38 may be expressed
in the integral form

4qr f’z dr _ J‘lek

— | === T)dT 3.39

), . (1) (3.39)
Assuming constant k, we then obtain

. 47Tk(Tsl - Ts,Z)

(1) — (1/ry) (3.40)

qr

Remembering that the thermal resistance is defined as the temperature difference divided
by the heat transfer rate, we obtain

1 (1 1
[ il = Ik (rl - r2> (3.41)

Note that the temperature distribution and Equations 3.40 and 3.41 could have been obtained
by using the standard approach, which begins with the appropriate form of the heat equation.

Spherical composites may be treated in much the same way as composite walls and
cylinders, where appropriate forms of the total resistance and overall heat transfer coeffi-
cient may be determined.

3.4  Summary of One-Dimensional Conduction Results

Many important problems are characterized by one-dimensional, steady-state conduction in
plane, cylindrical, or spherical walls without thermal energy generation. Key results for these
three geometries are summarized in Table 3.3, where AT refers to the temperature difference,
T,, — T,,, between the inner and outer surfaces identified in Figures 3.1, 3.7, and 3.9. In each
case, beginning with the heat equation, you should be able to derive the corresponding
expressions for the temperature distribution, heat flux, heat rate, and thermal resistance.

3.3 Conduction with Thermal Energy Generation

In the preceding section we considered conduction problems for which the temperature distri-
bution in a medium was determined solely by conditions at the boundaries of the medium. We
now want to consider the additional effect on the temperature distribution of processes that
may be occurring within the medium. In particular, we wish to consider situations for which
thermal energy is being generated due to conversion from some other energy form.
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TABLE 3.3 One-dimensional, steady-state solutions to the heat
equation with no generation

Plane Wall Cylindrical Wall“ Spherical Wall*
. d°T 1d( dT\ _ 1 d|( ,dT)\ _
Heat equation E_O ’dr(rdr>_0 ﬁ$<, E>_O
Temperature ATE T 4+ AT In (v/r,) T, - AT[ - ("1/")}
distribution Ta— ATy =2 A ) : 1= (n/r)
" AT kAT kAT
Heat flux (¢ k= L S kAl
“@ L rin(ry/ry) (1) — ()]
AT 2wLk AT 4ok AT
Heat rate (q) kAT In (ry/r,) (/r) — (1/ry)
Thermal L In (ry/ry) (1/rp) — (/ry)
resistance (R, ¢onq) kA 2wLk 4k

“The critical radius of insulation is r,, = k/h for the cylinder and r., = 2k/h for the sphere.

A common thermal energy generation process involves the conversion from electrical
to thermal energy in a current-carrying medium (Ohmic, or resistance, or Joule heating).
The rate at which energy is generated by passing a current / through a medium of electrical
resistance R, is

E,=IR, (3.42)

If this power generation (W) occurs uniformly throughout the medium of volume V, the
volumetric generation rate (W/m?) is then

g=—="-¢ (3.43)

Energy generation may also occur as a result of the deceleration and absorption of neutrons in
the fuel element of a nuclear reactor or exothermic chemical reactions occurring within a
medium. Endothermic reactions would, of course, have the inverse effect (a thermal energy
sink) of converting thermal energy to chemical bonding energy. Finally, a conversion from
electromagnetic to thermal energy may occur due to the absorption of radiation within the
medium. The process occurs, for example, when gamma rays are absorbed in external nuclear
reactor components (cladding, thermal shields, pressure vessels, etc.) or when visible radia-
tion is absorbed in a semitransparent medium. Remember not to confuse energy generation
with energy storage (Section 1.3.1).

3.3.1 The Plane Wall

Consider the plane wall of Figure 3.10a, in which there is uniform energy generation per
unit volume (q is constant) and the surfaces are maintained at 7,; and T},. For constant
thermal conductivity k, the appropriate form of the heat equation, Equation 2.22, is

T 4

== +-=0 3.44

PR (3.44)
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The general solution is

q
T= ok ¥+ Cx+ G, (3.45)
where C;, and C, are the constants of integration. For the prescribed boundary

conditions,

T(_L) = Ts‘,l and T(L) = T\‘,Z
The constants may be evaluated and are of the form
TvZ_Tvl q Tv1+T€2
C,=—"F7— d G="DI+———
T ) 2
in which case the temperature distribution is
qL2 x2 Ts,2 - Ts,l X Ts,l + Ts,2
Tx)=-"7-\1—% )+ =+ 3.46
0= ( 12 2 L 2 (3.46)

The heat flux at any point in the wall may, of course, be determined by using Equation 3.46
with Fourier’s law. Note, however, that with generation the heat ux is no longer indepen-
dent of x.

The preceding result simplifies when both surfaces are maintained at a common
temperature, T, ; = T,, = T,. The temperature distribution is then symmetrical about the
midplane, Figure 3.10b, and is given by

qu X2
Tx)=—1—=)+T 3.47
=", ( L2> ’ (3.47)

Ficure 3.10  Conduction in a plane wall with uniform heat generation.
(@) Asymmetrical boundary conditions. (b) Symmetrical boundary conditions.
(c) Adiabatic surface at midplane.
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The maximum temperature exists at the midplane

2

qL
TO=T.=2"+7T 3.48
O)=Ty="+T, (3.48)
in which case the temperature distribution, Equation 3.47, may be expressed as
T(x) — T, 2
To=T_(x (3.49)
T,— T, L

It is important to note that at the plane of symmetry in Figure 3.10b, the temperature gradi-
ent is zero, (dT/dx),—, = 0. Accordingly, there is no heat transfer across this plane, and it
may be represented by the adiabatic surface shown in Figure 3.10c. One implication of this
result is that Equation 3.47 also applies to plane walls that are perfectly insulated on one
side (x = 0) and maintained at a fixed temperature 7 on the other side (x = L).

To use the foregoing results, the surface temperature(s) 7, must be known. However, a
common situation is one for which it is the temperature of an adjoining fluid, 7., and not
T,, which is known. It then becomes necessary to relate 7, to T,,. This relation may be
developed by applying a surface energy balance. Consider the surface at x = L for the sym-
metrical plane wall (Figure 3.100) or the insulated plane wall (Figure 3.10c). Neglecting
radiation and substituting the appropriate rate equations, the energy balance given by Equa-
tion 1.13 reduces to

kT et -1 (3.50)

dx x=L

Substituting from Equation 3.47 to obtain the temperature gradient at x = L, it follows that

TSZTOO+% (3.51)
h
Hence T, may be computed from knowledge of 7., ¢, L, and h.

Equation 3.51 may also be obtained by applying an overall energy balance to the plane
wall of Figure 3.10b or 3.10c. For example, relative to a control surface about the wall of
Figure 3.10c, the rate at which energy is generated within the wall must be balanced by the
rate at which energy leaves via convection at the boundary. Equation 1.12¢ reduces to

E, = E, (3.52)
or, for a unit surface area,
gL=NWT,—T.,) (3.53)

Solving for T,, Equation 3.51 is obtained.

Equation 3.51 may be combined with Equation 3.47 to eliminate 7, from the tempera-
ture distribution, which is then expressed in terms of the known quantities ¢, L, k, h, and T.,.
The same result may be obtained directly by using Equation 3.50 as a boundary condition to
evaluate the constants of integration appearing in Equation 3.45.

ExXAMPLE 3.7

A plane wall is a composite of two materials, A and B. The wall of material A has uniform
heat generation ¢ = 1.5 X 10° W/m®, k, = 75 W/m-K, and thickness L, = 50 mm. The
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wall material B has no generation with kg = 150 W/m*K and thickness Ly = 20 mm. The
inner surface of material A is well insulated, while the outer surface of material B is cooled
by a water stream with 7,, = 30°C and 2 = 1000 W/m?- K.

1. Sketch the temperature distribution that exists in the composite under steady-state
conditions.

2. Determine the temperature 7, of the insulated surface and the temperature 7, of the
cooled surface.

SOLUTION
|

Known: Plane wall of material A with internal heat generation is insulated on one side
and bounded by a second wall of material B, which is without heat generation and is sub-
jected to convection cooling.

Find:
1. Sketch of steady-state temperature distribution in the composite.
2. Inner and outer surface temperatures of the composite.

Schematic:
TO TZ
& 1 T, =30°C
N | h = 1000 W/m*K
Insulation —- "— I T T T
O 1
G = 1.5 % 105 W/m®—= ‘ i
kp = 75 W/m-K ] '
* @ 1 | Water
1
: : — kg = 150 W/m+K
DLA =50 mm "}‘ﬁ" 98 = 0
o=
X 20 mm
Assumptions:

1. Steady-state conditions.

2. One-dimensional conduction in x-direction.
3. Negligible contact resistance between walls.
4. Inner surface of A adiabatic.

5. Constant properties for materials A and B.

Analysis:

1. From the prescribed physical conditions, the temperature distribution in the composite
is known to have the following features, as shown:

(a) Parabolic in material A.
(b) Zero slope at insulated boundary.
(¢) Linear in material B.

(d) Slope change = kg/k, = 2 at interface.
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The temperature distribution in the water is characterized by
(e) Large gradients near the surface.

|

|

|

I

|
A La+Lg
X
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2. The outer surface temperature 7, may be obtained by performing an energy balance
on a control volume about material B. Since there is no generation in this material, it
follows that, for steady-state conditions and a unit surface area, the heat flux into the
material at x = L, must equal the heat flux from the material due to convection at

x =L, + Lg. Hence

q” = h(TZ - TOO)

o))

The heat flux ¢” may be determined by performing a second energy balance on a control
volume about material A. In particular, since the surface at x = 0 is adiabatic, there is no
inflow and the rate at which energy is generated must equal the outflow. Accordingly,

for a unit surface area,

"

gLy =gq

Combining Equations 1 and 2, the outer surface temperature is

L
T,=T,+ T2
h
6 3
7, = 30°C + 15X 10°Wim’ X 0,05 m _ | gsoc

1000 W/m?*- K

From Equation 3.48 the temperature at the insulated surface is
To=22+T,

where 7', may be obtained from the following thermal circuit:

T, T, T,

oo
" "
cond, B Rconv

That is,
T] = TOC + (Rléond,B + RZonv) q"
where the resistances for a unit surface area are

L
" =B R’ = l

cond, B = kB conv h

(2)

3)
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Hence,

0.02m 1
150W/m-K 1000 W/m?-K

X 1.5 X 10°W/m? X 0.05 m
T, = 30°C + 85°C = 115°C

T, = 30°C +<

Substituting into Equation 3,

1.5 X 10°W/m?(0.05 m)?
0 2 X 75W/m-K
T, = 25°C + 115°C = 140°C <

+ 115°C

Commenis:
1. Material A, having heat generation, cannot be represented by a thermal circuit element.
2. Since the resistance to heat transfer by convection is significantly larger than that due to

7

conduction in material B, R, /R...q = 7.5, the surface-to-fluid temperature difference is
much larger than the temperature drop across material B, (T, — T..))/(T, — T,) = 7.5. This
result is consistent with the temperature distribution plotted in part 1.

. The surface and interface temperatures (7, 7}, and 7,) depend on the generation rate

g, the thermal conductivities k, and kg, and the convection coefficient 4. Each material
will have a maximum allowable operating temperature, which must not be exceeded if
thermal failure of the system is to be avoided. We explore the effect of one of these para-
meters by computing and plotting temperature distributions for values of 7 = 200 and
1000 W/m?- K, which would be representative of air and liquid cooling, respectively.

450
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430

T (°C)

420
410

400
0

10 20 30 40 50 60
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~
o
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140 5
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130
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For h = 200 W/m?*+K, there is a significant increase in temperature throughout the sys-
tem and, depending on the selection of materials, thermal failure could be a problem.
Note the slight discontinuity in the temperature gradient, d7/dx, at x = 50 mm. What is
the physical basis for this discontinuity? We have assumed negligible contact resistance
at this location. What would be the effect of such a resistance on the temperature distri-
bution throughout the system? Sketch a representative distribution. What would be the
effect on the temperature distribution of an increase in g, k,, or kz? Qualitatively sketch
the effect of such changes on the temperature distribution.

4. This example is solved in the Advanced section of IHT.

F

3.5.2 Radial Systems

Heat generation may occur in a variety of radial geometries. Consider the long, solid cylin-
der of Figure 3.11, which could represent a current-carrying wire or a fuel element in a
nuclear reactor. For steady-state conditions, the rate at which heat is generated within the
cylinder must equal the rate at which heat is convected from the surface of the cylinder to a
moving fluid. This condition allows the surface temperature to be maintained at a fixed
value of 7.

To determine the temperature distribution in the cylinder, we begin with the appropri-
ate form of the heat equation. For constant thermal conductivity k, Equation 2.26 reduces to

1d|( _dT q
- R .
T dr (r dr) k 0 (3-54)

Separating variables and assuming uniform generation, this expression may be integrated
to obtain

dTr q
7 = - = + .
r - 2kr2 C, (3.55)

Repeating the procedure, the general solution for the temperature distribution becomes

== 7 +Clnr+ G (3.56)

Cold fluid
T, h

N\

S/ N FIGURE 3.11 Conduction in a solid cylinder with uniform
heat generation.
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To obtain the constants of integration C; and C,, we apply the boundary conditions

ar) 0 and T(ry) =T,

dr r=0
The first condition results from the symmetry of the situation. That is, for the solid cylinder the
centerline is a line of symmetry for the temperature distribution and the temperature gradient
must be zero. Recall that similar conditions existed at the midplane of a wall having sym-
metrical boundary conditions (Figure 3.100). From the symmetry condition at » = 0 and
Equation 3.55, it is evident that C, = 0. Using the surface boundary condition at r = r,
with Equation 3.56, we then obtain

q

C=T,+—r; 3.57
2 s 4k Ty ( )
The temperature distribution is therefore
2 2
qre r
T(r) = 1—=|+T, 3.58
=" ( r5> : (3.58)

Evaluating Equation 3.58 at the centerline and dividing the result into Equation 3.58, we
obtain the temperature distribution in nondimensional form,

TW-1T,_ . (rV
T,—1, <r> 39

o0
where T, is the centerline temperature. The heat rate at any radius in the cylinder may, of
course, be evaluated by using Equation 3.58 with Fourier’s law.
To relate the surface temperature, T, to the temperature of the cold fluid T, either a
surface energy balance or an overall energy balance may be used. Choosing the second
approach, we obtain

q(mroL) = hQ2ar, L)(T, — T..)

or

qr()
2h

T.=T.,+ (3.60)

3.5.3 Tabulated Solutions

Appendix C provides a convenient and systematic procedure for treating the different combi-
nations of surface conditions that may be applied to one-dimensional planar and radial (cylin-
drical and spherical) geometries with uniform thermal energy generation. From the tabulated
results of this appendix, it is a simple matter to obtain distributions of the temperature, heat
flux, and heat rate for boundary conditions of the second kind (a uniform surface heat flux)
and the third kind (a surface heat flux that is proportional to a convection coefficient / or the
overall heat transfer coefficient U). You are encouraged to become familiar with the con-
tents of the appendix.

3.3.4 Application of Resistance Concepts

We conclude our discussion of heat generation effects with a word of caution. In particular,
when such effects are present, the heat transfer rate is not a constant, independent of the
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spatial coordinate. Accordingly, it would be incorrect to use the conduction resistance con-
cepts and the related heat rate equations developed in Sections 3.1 and 3.3.

4y | ExampPLE 3.8

Consider a long solid tube, insulated at the outer radius r, and cooled at the inner radius |,
with uniform heat generation ¢ (W/m?) within the solid.
1. Obtain the general solution for the temperature distribution in the tube.

2. In a practical application a limit would be placed on the maximum temperature that is
permissible at the insulated surface (r = r,). Specifying this limit as 7,,, identify
appropriate boundary conditions that could be used to determine the arbitrary con-
stants appearing in the general solution. Determine these constants and the correspond-
ing form of the temperature distribution.

3. Determine the heat removal rate per unit length of tube.

4. If the coolant is available at a temperature T, obtain an expression for the convection
coefficient that would have to be maintained at the inner surface to allow for operation
at prescribed values of 7, and q.

SOLUTION
|

Known: Solid tube with uniform heat generation is insulated at the outer surface and
cooled at the inner surface.

Find:
1. General solution for the temperature distribution 7(r).

2. Appropriate boundary conditions and the corresponding form of the temperature
distribution.

3. Heat removal rate for specified maximum temperature.
4. Corresponding required convection coefficient at the inner surface.

Schematic:
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Assumptions:

1. Steady-state conditions.
One-dimensional radial conduction.
Constant properties.

Uniform volumetric heat generation.

ok wb

Outer surface adiabatic.

Analysis:

1. To determine 7(r), the appropriate form of the heat equation, Equation 2.26, must be
solved. For the prescribed conditions, this expression reduces to Equation 3.54, and
the general solution is given by Equation 3.56. Hence, this solution applies in a cylin-
drical shell, as well as in a solid cylinder (Figure 3.11).

2. Two boundary conditions are needed to evaluate C; and C,, and in this problem it is
appropriate to specify both conditions at 7,. Invoking the prescribed temperature limit,

1(ry) = T,, (1

and applying Fourier’s law, Equation 3.29, at the adiabatic outer surface

dr

dr |, =0 @)

Using Equations 3.56 and 1, it follows that

q
T,,= —@rg-i-Cllnrfl—Cz 3)

Similarly, from Equations 3.55 and 2

q
0= % r+ C, 4)
Hence, from Equation 4,
q
Ci=y7 5)
and from Equation 3
q q
C2=sz+ﬂr§—ﬂr§1nr2 (6)

Substituting Equations 5 and 6 into the general solution, Equation 3.56, it follows that

q q r
T =Tt (3= r) =5 rin g (7)
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3. The heat removal rate may be determined by obtaining the conduction rate at r; or by
evaluating the total generation rate for the tube. From Fourier’s law

ar
= —k2mr =
ar ' dr

Hence, substituting from Equation 7 and evaluating the result at |,

q qr
'(r) = —KRar|—=—r + === —mq(r? — r} 8
q,/(ry) o T q(rs 0 (&)
Alternatively, because the tube is insulated at r,, the rate at which heat is generated in
the tube must equal the rate of removal at r,. That is, for a control volume about the
tube, the energy conservation requirement, Equation 1.12c, reduces to E, — E,, = 0,

where E, = qm(r; — r)L and E,, = qlona L = —q(ry)L. Hence

qy(r) = —mq(ry — r7) )

4. Applying the energy conservation requirement, Equation 1.13, to the inner surface, it
follows that

' _
Geond = Yconv

or
wq(r; = ri) = h2ar(T,, — T.)
Hence
_ q3—rD) (10)
2rl(Ts,l - Too)

where T, ; may be obtained by evaluating Equation 7 at r = r;.

Comments:

1. Note that, through application of Fourier’s law in part 3, the sign on ¢,(r;) was found to
be negative, Equation 8, implying that heat flow is in the negative r-direction. However,
in applying the energy balance, we acknowledged that heat flow was out of the wall.
Hence we expressed g .,q as —¢,(r;) and we expressed ¢, in terms of (T, — T,), rather
than (T, — T} ).

2. Results of the foregoing analysis may be used to determine the convection coefficient
required to maintain the maximum tube temperature 7;, below a prescribed value.
Consider a tube of thermal conductivity Kk = 5 W/m- K and inner and outer radii of
r, = 20 mm and r, = 25 mm, respectively, with a maximum allowable temperature of
T,, = 350°C. The tube experiences heat generation at a rate of ¢ =5 X 10° W/m’,
and the coolant is at a temperature of 7., = 80°C. Obtaining 7(r)) = T, = 336.5°C
from Equation 7 and substituting into Equation 10, the required convection coefficient
is found to be & = 110 W/m? - K. Using the IHT Workspace, parametric calculations
may be performed to determine the effects of the convection coefficient and the gener-
ation rate on the maximum tube temperature, and results are plotted as a function of
h for three values of .
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500

G x 1078 (W/m®)

400

300

200

Maximum tube temperature, T, , (°C)

100
20 60 100 140 180

Convection coefficient, i (W/m?2-K)

For each generation rate, the minimum value of & needed to maintain 7;, = 350°C
may be determined from the figure.

3. The temperature distribution, Equation 7, may also be obtained by using the results of
Appendix C. Applying a surface energy balance at r = r;, with g(r) = —qm(r3 — r})L,
(T,, — T,,;) may be determined from Equation C.8 and the result substituted into Equa-
tion C.2 to eliminate 7 ; and obtain the desired expression.

F

3.6 Heat Transfer from Extended Surfaces

The term extended surface is commonly used to depict an important special case involving
heat transfer by conduction within a solid and heat transfer by convection (and/or radiation)
from the boundaries of the solid. Until now, we have considered heat transfer from the
boundaries of a solid to be in the same direction as heat transfer by conduction in the solid.
In contrast, for an extended surface, the direction of heat transfer from the boundaries is
perpendicular to the principal direction of heat transfer in the solid.

Consider a strut that connects two walls at different temperatures and across which there
is fluid flow (Figure 3.12). With T, > T,, temperature gradients in the x-direction sustain
heat transfer by conduction in the strut. However, with 7}, > T, > T, there is concurrent heat

b |
!

L
— Yconv
Fluid > =
T., h //
—
h
1 0
qx 1 Tl T2 . .
T(x) FiGURE 3.12 Combined conduction and

I >T,>T, convectlion in a structural element.
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transfer by convection to the fluid, causing ¢,, and hence the magnitude of the temperature
gradient, |dT/dx|, to decrease with increasing x.

Although there are many different situations that involve such combined conduction—
convection effects, the most frequent application is one in which an extended surface is
used specifically to enhance heat transfer between a solid and an adjoining fluid. Such an
extended surface is termed a n.

Consider the plane wall of Figure 3.13a . If T is fixed, there are two ways in which the
heat transfer rate may be increased. The convection coefficient /4 could be increased by
increasing the fluid velocity, and/or the fluid temperature 7, could be reduced. However,
there are many situations for which increasing 4 to the maximum possible value is either
insufficient to obtain the desired heat transfer rate or the associated costs are prohibitive.
Such costs are related to the blower or pump power requirements needed to increase h
through increased fluid motion. Moreover, the second option of reducing 7. is often
impractical. Examining Figure 3.13b , however, we see that there exists a third option. That
is, the heat transfer rate may be increased by increasing the surface area across which the
convection occurs. This may be done by employing ns that extend from the wall into
the surrounding fluid. The thermal conductivity of the fin material can have a strong effect
on the temperature distribution along the fin and therefore influences the degree to which
the heat transfer rate is enhanced. Ideally, the fin material should have a large thermal con-
ductivity to minimize temperature variations from its base to its tip. In the limit of infinite
thermal conductivity, the entire fin would be at the temperature of the base surface, thereby
providing the maximum possible heat transfer enhancement.

Examples of fin applications are easy to find. Consider the arrangement for cooling
engine heads on motorcycles and lawn mowers or for cooling electric power transformers.
Consider also the tubes with attached fins used to promote heat exchange between air and
the working fluid of an air conditioner. Two common finned-tube arrangements are shown
in Figure 3.14.

Different fin configurations are illustrated in Figure 3.15. A straight n is any extended
surface that is attached to a plane wall. It may be of uniform cross-sectional area, or its
cross-sectional area may vary with the distance x from the wall. An annular n is one that is
circumferentially attached to a cylinder, and its cross section varies with radius from the
wall of the cylinder. The foregoing fin types have rectangular cross sections, whose area
may be expressed as a product of the fin thickness ¢ and the width w for straight fins or the
circumference 27rr for annular fins. In contrast a pin n, or spine, is an extended surface of
circular cross section. Pin fins may also be of uniform or nonuniform cross section. In any

T.

=

h

- T h /
/ —
7 i

T,
— T, FicUrRE 3.13  Use of fins to enhance
heat transfer from a plane wall.

(a) (b) (a) Bare surface. (b) Finned surface.
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Liquid flow

Gas flow

FiGUuRrE 3.14  Schematic of typical finned-tube heat exchangers.

application, selection of a particular fin configuration may depend on space, weight, manufac-
turing, and cost considerations, as well as on the extent to which the fins reduce the surface
convection coefficient and increase the pressure drop associated with flow over the fins.

3.6.1 A General Conduction Analysis

As engineers we are primarily interested in knowing the extent to which particular
extended surfaces or fin arrangements could improve heat transfer from a surface to the
surrounding fluid. To determine the heat transfer rate associated with a fin, we must first
obtain the temperature distribution along the fin. As we have done for previous systems, we
begin by performing an energy balance on an appropriate differential element. Consider
the extended surface of Figure 3.16. The analysis is simplified if certain assumptions are
made. We choose to assume one-dimensional conditions in the longitudinal (x-) direction,
even though conduction within the fin is actually two-dimensional. The rate at which
energy is convected to the fluid from any point on the fin surface must be balanced by
the net rate at which energy reaches that point due to conduction in the transverse (y-, z-)
direction. However, in practice the fin is thin, and temperature changes in the transverse

e

I—» X I—»x I_’x

(a) (b) (c) (d)

FIGURE 3.15 Fin configurations. (a) Straight fin of uniform cross section. (b) Straight fin of
nonuniform cross section. (¢) Annular fin. (d) Pin fin.
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FIGURE 3.16 Energy balance for an
extended surface.

direction within the fin are small compared with the temperature difference between the fin
and the environment. Hence, we may assume that the temperature is uniform across the
fin thickness, that is, it is only a function of x. We will consider steady-state conditions and
also assume that the thermal conductivity is constant, that radiation from the surface is neg-
ligible, that heat generation effects are absent, and that the convection heat transfer coeffi-
cient 4 is uniform over the surface.

Applying the conservation of energy requirement, Equation 1.12c, to the differential
element of Figure 3.16, we obtain

9y = Yx+ax + dqconv (361)
From Fourier’s law we know that
g = —kA, dr (3.62)
dx

where A, is the cross-sectional area, which may vary with x. Since the conduction heat rate
at x + dx may be expressed as

Qrvar = G T iZ: dx (3.63)
it follows that
Gerax = ~KA % —k d% (AC ZZ) dx (3.64)
The convection heat transfer rate may be expressed as
dqcony = hdA(T — T..) (3.65)

where dA; is the surface area of the differential element. Substituting the foregoing rate
equations into the energy balance, Equation 3.61, we obtain

d dr\ _ hdA,
LA ) 2T (T —T,) =
dx( "dx) kdx( )=0
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or

d2T+(1dAc>dT_<1hdAs

— |(T—-T,=0 3.66
dx? A, dx ) dx Ak dx>( ) ( )

This result provides a general form of the energy equation for an extended surface. Its solu-
tion for appropriate boundary conditions provides the temperature distribution, which may
be used with Equation 3.62 to calculate the conduction rate at any x.

3.6.2 Fins of Uniform Cross-Sectional Area

To solve Equation 3.66 it is necessary to be more specific about the geometry. We begin with
the simplest case of straight rectangular and pin fins of uniform cross section (Figure 3.17).
Each fin is attached to a base surface of temperature 7(0) = 7}, and extends into a fluid of
temperature 7.

For the prescribed fins, A, is a constant and A; = Px, where A, is the surface area mea-
sured from the base to x and P is the fin perimeter. Accordingly, with dA /dx = 0 and
dA,/dx = P, Equation 3.66 reduces to

d’T _ hP

i kA (T—-T,=0 (3.67)

To simplify the form of this equation, we transform the dependent variable by defining an
excess temperature 6 as
0(x) =Tkx) — T (3.68)

where, since T, is a constant, df/dx = dT/dx. Substituting Equation 3.68 into Equation 3.67,
we then obtain

a0 _
dx?

m0 =0 (3.69)

=

T

D
nD?/4

P
AC
b

FIGURE 3.17  Straight fins of uniform cross section. (¢) Rectangular
fin. (b) Pin fin.
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where

2= P

A (3.70)

c

Equation 3.69 is a linear, homogeneous, second-order differential equation with constant
coefficients. Its general solution is of the form

0(x) =Ce™ + Cre™™ (3.71)

By substitution it may readily be verified that Equation 3.71 is indeed a solution to
Equation 3.69.

To evaluate the constants C; and C, of Equation 3.71, it is necessary to specify appropriate
boundary conditions. One such condition may be specified in terms of the temperature at the
base of the fin (x = 0)

00)=17,—T, =6, (3.72)

The second condition, specified at the fin tip (x = L), may correspond to one of four differ-
ent physical situations.

The first condition, Case A, considers convection heat transfer from the fin tip. Apply-
ing an energy balance to a control surface about this tip (Figure 3.18), we obtain

hAIT(L) — T.] = —kA, 4L
dx x=L
or
o) = —k 20 3.73)
dx x=L

That is, the rate at which energy is transferred to the fluid by convection from the tip must
equal the rate at which energy reaches the tip by conduction through the fin. Substituting
Equation 3.71 into Equations 3.72 and 3.73, we obtain, respectively,

0,=C + G, (3.74)
and
h(Cie™ + Cye™ ™) = km(Cye ™ — C,e™")
Solving for C, and C,, it may be shown, after some manipulation, that

0 _ cosh m(L — x) + (h/mk) sinh m(L — x) (3.75)
0, cosh mL + (h/mk) sinh mL '

The form of this temperature distribution is shown schematically in Figure 3.18. Note that
the magnitude of the temperature gradient decreases with increasing x. This trend is a con-
sequence of the reduction in the conduction heat transfer g, (x) with increasing x due to
continuous convection losses from the fin surface.

We are particularly interested in the amount of heat transferred from the entire fin.
From Figure 3.18, it is evident that the fin heat transfer rate g, may be evaluated in two
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Fluid, 7.,
qCOrIV
T, /
[ Y— m
a4y = g ——> k4, 2| ——> |l —> AT - T.)
i
6,
=
e}
FiGure 3.18 Conduction and
OO L convection in a fin of uniform
x cross section.

alternative ways, both of which involve use of the temperature distribution. The simpler
procedure, and the one that we will use, involves applying Fourier’s law at the fin base.
That is,

dr do
=q,= — kA, = —kA.— 3.76
qf qp cdx —o cdx —o ( )
Hence, knowing the temperature distribution, 6(x), g, may be evaluated, giving
po g +
4= hPkALD, sinh mL + (h/mk) cosh mL (317

cosh mL + (h/mk) sinh mL

However, conservation of energy dictates that the rate at which heat is transferred by con-
vection from the fin must equal the rate at which it is conducted through the base of the fin.
Accordingly, the alternative formulation for g, is

qr= Lh[T(x) —T,] dA,

qr= | ho(x)dA, (3.78)

A

where Ay is the fotal, including the tip, n surface area. Substitution of Equation 3.75 into
Equation 3.78 would yield Equation 3.77.

The second tip condition, Case B, corresponds to the assumption that the convective
heat loss from the fin tip is negligible, in which case the tip may be treated as adiabatic and

do

= i
I 0 (3.79)

x=L

Substituting from Equation 3.71 and dividing by m, we then obtain

Cie" — Coe ™™ =0
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Using this expression with Equation 3.74 to solve for C, and C, and substituting the results
into Equation 3.71, we obtain

6 coshm(L — x)
- 3.80
0, cosh mL (3-80)

Using this temperature distribution with Equation 3.76, the fin heat transfer rate is then
qr= "V hPkA_ 6, tanh mL (3.81)

In the same manner, we can obtain the fin temperature distribution and heat transfer rate
for Case C, where the temperature is prescribed at the fin tip. That is, the second boundary con-
dition is O(L) = 0,, and the resulting expressions are of the form

6 _ (6./6,) sinh mx + sinh m(L — x)

0, sinh mL

hmL — 6,/
qf:\/]/TkAceb cosn m GL Hb

sinh mL

(3.82)

(3.83)

The very long n, Case D, is an interesting extension of these results. In particular, as L — o,
0, — 0 and it is easily verified that

o
L= 3.84
b, e (3.84)

qr="\hPkA 6, (3.85)

The foregoing results are summarized in Table 3.4. A table of hyperbolic functions is provided

in Appendix B.1.

TABLE 3.4 Temperature distribution and heat loss for fins of uniform cross section

Tip Condition Temperature Fin Heat
Case (x=1L) Distribution 6/6, Transfer Rate g;
A tcrgr?:fztlon heat coshm(L — x) + (h/mk) sinh m(L — x) sinh mL + (himk) cosh mL
hH(L) : _kdeldx‘X:L coshmL + (h/mk) sinh mL cosh mL + (h/mk) sinh mL
(3.75) (3.77)
B Adiabatic: cosh m(L — x)
- M tanh mL
de/dx‘x:L =0 coshmL "
(3.80) (3.81)
C Prescribed temperature:
o(L) =0, (6,/6,) sinh mx + sinh m(L — x) (coshmL — 6,/6,)
sinh mL sinh mL
(3.82) (3.83)
D Infinite fin (L — o0):
6(L) =0 e (3.84) M (3.85)
0=T-T, m* = hPJkA,

0,=00)=T,—T. M=\hPkA9,
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EXAMPLE 3.9

A very long rod 5 mm in diameter has one end maintained at 100°C. The surface of the rod is
exposed to ambient air at 25°C with a convection heat transfer coefficient of 100 W/m?** K.

1. Determine the temperature distributions along rods constructed from pure copper,
2024 aluminum alloy, and type AISI 316 stainless steel. What are the corresponding
heat losses from the rods?

2. Estimate how long the rods must be for the assumption of innite length to yield an
accurate estimate of the heat loss.

SOLUTION
|

Known: A long circular rod exposed to ambient air.

Find:

1. Temperature distribution and heat loss when rod is fabricated from copper, an alu-
minum alloy, or stainless steel.

2. How long rods must be to assume infinite length.

Schematic:
Air
o ’{/ T, = 25°C
W T, =100°C / h =100 W/m?K
= 4 ? |
) ka L—c, D=5 mm
Assumpltions:

1. Steady-state conditions.

One-dimensional conduction along the rod.
Constant properties.

Negligible radiation exchange with surroundings.
Uniform heat transfer coefficient.

AN I

Infinitely long rod.

Properties: Table A.1, copper [T = (T, + T,)/2 = 62.5°C = 335 K]: k = 398 W/m-K.
Table A.1, 2024 aluminum (335 K): £ = 180 W/m-K. Table A.1, stainless steel, AISI 316
(335K): k= 14 W/m-K.

Analysis:
1. Subject to the assumption of an infinitely long fin, the temperature distributions are
determined from Equation 3.84, which may be expressed as

T=T,+(T,—T.)e ™
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where m = (hP/kA.)" = (4h/kD)". Substituting for 4 and D, as well as for the thermal
conductivities of copper, the aluminum alloy, and the stainless steel, respectively, the
values of m are 14.2, 21.2, and 75.6 m~'. The temperature distributions may then be
computed and plotted as follows:

100
80
o
< 60
~
40
T, =
20
50 100 150 200 250 300
x (mm)

From these distributions, it is evident that there is little additional heat transfer associ-
ated with extending the length of the rod much beyond 50, 200, and 300 mm, respec-
tively, for the stainless steel, the aluminum alloy, and the copper.

From Equation 3.85, the heat loss is

q;="\/hPKA,0,

Hence for copper,

qr= [IOOW/mz-K X X 0.005m

12
X 398 W/m-K X % (0.005 m)z] (100 — 25)°C

=83W <

Similarly, for the aluminum alloy and stainless steel, respectively, the heat rates are
gr=56Wand 1.6 W.

2. Since there is no heat loss from the tip of an infinitely long rod, an estimate of the
validity of this approximation may be made by comparing Equations 3.81 and 3.85. To
a satisfactory approximation, the expressions provide equivalent results if tanh mL
= 0.99 or mL = 2.65. Hence a rod may be assumed to be infinitely long if

2.65 kA"
L=L,6=%2=765
mn <hP>

For copper,

<

. X X 21172
L =65 [398 W/m - K X (7r/4)(0.005 m) ] Colom
100 W/m? - K X 7r(0.005 m)

Results for the aluminum alloy and stainless steel are L,, = 0.13 m and L., = 0.04 m,
respectively.
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Comments:

1. The foregoing results suggest that the fin heat transfer rate may accurately be predicted
from the infinite fin approximation if mL = 2.65. However, if the infinite fin approxi-
mation is to accurately predict the temperature distribution 7(x), a larger value of mL
would be required. This value may be inferred from Equation 3.84 and the requirement
that the tip temperature be very close to the fluid temperature. Hence, if we require that
0(L)/6,, = exp(—mL) < 0.01, it follows that mL > 4.6, in which case L., = 0.33, 0.23,
and 0.07 m for the copper, aluminum alloy, and stainless steel, respectively. These
results are consistent with the distributions plotted in part 1.

2. This example is solved in the Advanced section of IHT.

F

3.6.3 Fin Performance

Recall that fins are used to increase the heat transfer from a surface by increasing the effec-
tive surface area. However, the fin itself represents a conduction resistance to heat transfer
from the original surface. For this reason, there is no assurance that the heat transfer rate
will be increased through the use of fins. An assessment of this matter may be made by
evaluating the n effectiveness ;. It is defined as the ratio of the n heat transfer rate to the
heat transfer rate that would exist without the n. Therefore

4y
8 =
T hA 0,

(3.86)

where A, is the fin cross-sectional area at the base. In any rational design the value of &
should be as large as possible, and in general, the use of fins may rarely be justified unless
&> 2.

’ Subject to any one of the four tip conditions that have been considered, the effectiveness
for a fin of uniform cross section may be obtained by dividing the appropriate expression for
gy in Table 3.4 by hA_,0,. Although the installation of fins will alter the surface convection
coefficient, this effect is commonly neglected. Hence, assuming the convection coefficient
of the finned surface to be equivalent to that of the unfinned base, it follows that, for the infi-
nite fin approximation (Case D), the result is

12
&= (:j) (3.87)

Several important trends may be inferred from this result. Obviously, fin effectiveness is
enhanced by the choice of a material of high thermal conductivity. Aluminum alloys and
copper come to mind. However, although copper is superior from the standpoint of thermal
conductivity, aluminum alloys are the more common choice because of additional benefits
related to lower cost and weight. Fin effectiveness is also enhanced by increasing the ratio of
the perimeter to the cross-sectional area. For this reason, the use of thin, but closely spaced
fins, is preferred, with the proviso that the fin gap not be reduced to a value for which flow
between the fins is severely impeded, thereby reducing the convection coefficient.

Equation 3.87 also suggests that the use of fins can be better justified under conditions for
which the convection coefficient / is small. Hence from Table 1.1 it is evident that the need
for fins is stronger when the fluid is a gas rather than a liquid and when the surface heat transfer
is by free convection. If fins are to be used on a surface separating a gas and a liquid, they are
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generally placed on the gas side, which is the side of lower convection coefficient. A common
example is the tubing in an automobile radiator. Fins are applied to the outer tube surface, over
which there is flow of ambient air (small /), and not to the inner surface, through which there is
flow of water (large /). Note that, if £, > 2 is used as a criterion to justify the implementation
of fins, Equation 3.87 yields the requirement that (kP/hA,) > 4.

Equation 3.87 provides an upper limit to &, which is reached as L approaches infinity.
However, it is certainly not necessary to use very long fins to achieve near maximum heat
transfer enhancement. As seen in Example 3.8, 99% of the maximum possible fin heat
transfer rate is achieved for mL = 2.65. Hence, it would make no sense to extend the fins
beyond L = 2.65/m.

Fin performance may also be quantified in terms of a thermal resistance. Treating the
difference between the base and fluid temperatures as the driving potential, a n resistance
may be defined as

_0

R, ;= 7 (3.88)

This result is extremely useful, particularly when representing a finned surface by a thermal
circuit. Note that, according to the fin tip condition, an appropriate expression for g, may be
obtained from Table 3.4.

Dividing Equation 3.88 into the expression for the thermal resistance due to convection
at the exposed base,

1

R, = 3.89
t,b hAc,b ( )
and substituting from Equation 3.86, it follows that
R
g=—2 (3.90)
R, ;

Hence the fin effectiveness may be interpreted as a ratio of thermal resistances, and to
increase & it is necessary to reduce the conduction/convection resistance of the fin. If the
fin is to enhance heat transfer, its resistance must not exceed that of the exposed base.

Another measure of fin thermal performance is provided by the n efciency — m,. The
maximum driving potential for convection is the temperature difference between the base
(x = 0) and the fluid, 6, = T, — T.. Hence the maximum rate at which a fin could dissipate
energy is the rate that would exist if the entire fin surface were at the base temperature.
However, since any fin is characterized by a finite conduction resistance, a temperature
gradient must exist along the fin and the preceding condition is an idealization. A logical
definition of fin efficiency is therefore

a9
dmax— hA,0,

ur (3.91)

where A, is the surface area of the fin. For a straight fin of uniform cross section and an adi-
abatic tip, Equations 3.81 and 3.91 yield

_ M tanh mL _ tanh mL
T hpLe, mL

Referring to Table B.1, this result tells us that 1, approaches its maximum and minimum
values of 1 and 0, respectively, as L approaches 0 and .

(3.92)
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In lieu of the somewhat cumbersome expression for heat transfer from a straight rec-
tangular fin with an active tip, Equation 3.77, it has been shown that approximate, yet accu-
rate, predictions may be obtained by using the adiabatic tip result, Equation 3.81, with a
corrected fin length of the form L, = L + (#/2) for a rectangular fin and L, = L + (D/4) for
a pin fin [14]. The correction is based on assuming equivalence between heat transfer from
the actual fin with tip convection and heat transfer from a longer, hypothetical fin with an
adiabatic tip. Hence, with tip convection, the fin heat rate may be approximated as

gy = M tanh mL, (3.93)
and the corresponding efficiency as
tanh mL
=— 3.94
L — (3.94)

c

Errors associated with the approximation are negligible if (ht/k) or (hD/2k) < 0.0625 [15].
If the width of a rectangular fin is much larger than its thickness, w > ¢, the perimeter
may be approximated as P = 2w, and

hP 1/2 2h 1/2
L=(22) " =(20)
ke <kA> «\kt) "

Multiplying numerator and denominator by L* and introducing a corrected fin profile area,
A, = L., it follows that

1/2
mL, = (Z:) " (3.95)

J;

Hence, as shown in Figures 3.19 and 3.20, the efficiency of a rectangular fin with tip con-
vection may be represented as a function of L 2(h/kAp)” 2,

100
P L=L
80 A,=Lil3
X
‘ 12
0 <t
2
=
20 jc 5 2 +1/2 1
=Lt
e «L —ﬂ/2
y~x
y « L=L
20 02 A= Lt/2
LY
0
0 0.5 1.0 15 2.0 2.5
L2(hikA )"

FIGURE 3.19 Efficiency of straight fins (rectangular, triangular, and parabolic profiles).
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Ficure 3.20  Efficiency of annular fins of rectangular profile.

3.6.4 Fins of Nonuniform Cross-Sectional Area

Analysis of fin thermal behavior becomes more complex if the fin is of nonuniform cross
section. For such cases the second term of Equation 3.66 must be retained, and the solu-
tions are no longer in the form of simple exponential or hyperbolic functions. As a special
case, consider the annular fin shown in the inset of Figure 3.20. Although the fin thickness
is uniform (¢ is independent of r), the cross-sectional area, A, = 27rrt, varies with r. Replac-
ing x by r in Equation 3.66 and expressing the surface area as A, = 27 (r> — r}), the general
form of the fin equation reduces to

d°T | 14T _2h
a2 L _Ty=0
dr? T dr kt ( )
or, with m?> = 2h/kt and 6 = T- T,
e 140,
+o - =
02 T m6O=0

The foregoing expression is a modied Bessel equation of order zero, and its general solu-
tion is of the form

0(r) = C\l(mr) + C,K(mr)

where [, and K|, are modified, zero-order Bessel functions of the first and second kinds,
respectively. If the temperature at the base of the fin is prescribed, 6(r;) = 6,, and an adia-
batic tip is presumed, dt9/dr\,2 = 0, C, and C, may be evaluated to yield a temperature dis-
tribution of the form

0 lmr)K,(mry) + Ky(mr)l,(mr,)

0, B Io(mr)K,(mry) + Ky(mr)I,(mr,)




168

Chapter 3 ®m One-Dimensional, Steady-State Conduction

where I,(mr) = d[1y(mr))/d(mr) and K,(mr) = —d[K,(mr)]/d(mr) are modified, first-order
Bessel functions of the first and second kinds, respectively. The Bessel functions are tabu-
lated in Appendix B.

With the fin heat transfer rate expressed as

do
qr= _kAc,b% . = —kQ2mr 1) ar

it follows that

K (mr)I,(mry) — I,(mr)K (mr,)
Ko(mr)I,(mry) + Iy(mr)K (mry)

qy = 2mkr 10,m

from which the fin efficiency becomes

_ qr _ 2ry K\(mr)I\(mry) — I ,(mr))K,(mr,)
2m(r; — b, m(r; — r7) Komr)I(mry) + Iy(mr)K,(mr,)

m (3.96)

This result may be applied for an active (convecting) tip, if the tip radius r, is replaced by a
corrected radius of the form r,. = r, + (#/2). Results are represented graphically in Figure 3.20.

Knowledge of the thermal efficiency of a fin may be used to evaluate the fin resistance,
where, from Equations 3.88 and 3.91, it follows that

1

R,=—1—
7 hAm

(3.97)

Expressions for the efficiency and surface area of several common fin geometries are
summarized in Table 3.5. Although results for the fins of uniform thickness or diameter

TABLE 3.5 Efficiency of common fin shapes

Straight Fins
Rectangular
A = 2w, _ tanhml, (3.94)
L.=L+ (2) } T .
A, =1L
L=
Triangular I,(2mL)
_ 2y 212 R S 3.98

if 3 (2[;v2[)LL (t2)] W L 12mL) (.98)

L=
Parabolic”
A, =w[C|L+

= wIC, " 2 (3.99)

(LY0)n (1L + C))]
C, =[1+ (/L)"?
A, = (t13)L

AL+ 1R 1
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TaBLE 3.5 Continued

Circular Fin
Rectangular®
A= 20 —
Foe = 1yt (112)
V=m@3—rt

Pin Fins
Rectangular®
A; = wDL,
L.=L+ (D/4)
V = (wD*/4)L

Triangular®

Ap=T2 12 + (DR

V = (w/12)D’L

Parabolic®

L3
A= Z—D {GC, —

%m [(2DCJL) + C5]}

C, =1+ 2(D/Ly

! _ K\(mr)I,(mry.) — I,(mr))K (mr.) (3.96)
| j T O K () + KomrLmr,)
i 9 e
i le— ] ——» ’ (V%C - r%)
N
! >
tanh mL
D _ tamhmb, 3.100
]
L—»
2 L,(2mL)
W L 1,2mL) (3.10D
E »
]
uh 2 (3.102)

- [4/9(nLy* + 11" + 1

C,=[1+ (D/L"

V = (7/20)D* L

“m = 2hikn)'".
bm = (4h/kD)".

were obtained by assuming an adiabatic tip, the effects of convection may be treated by
using a corrected length (Equations 3.94 and 3.100) or radius (Equation 3.96). The triangu-
lar and parabolic fins are of nonuniform thickness that reduces to zero at the fin tip.

Expressions for the profile area, A,, or the volume, V, of a fin are also provided in
Table 3.5. The volume of a straight fin is simply the product of its width and profile area,
V=wA,.

Fin design is often motivated by a desire to minimize the fin material and/or related
manufacturing costs required to achieve a prescribed cooling effectiveness. Hence, a straight
triangular fin is attractive because, for equivalent heat transfer, it requires much less volume
(fin material) than a rectangular profile. In this regard, heat dissipation per unit volume, (¢/V);,
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is largest for a parabolic profile. However, since (¢/V), for the parabolic profile is only
slightly larger than that for a triangular profile, its use can rarely be justified in view of its
larger manufacturing costs. The annular fin of rectangular profile is commonly used to
enhance heat transfer to or from circular tubes.

3.6.5 Overall Surface Efficiency

In contrast to the fin efficiency 7, which characterizes the performance of a single fin, the
overall surface efciency m, characterizes an array of fins and the base surface to which
they are attached. Representative arrays are shown in Figure 3.21, where S designates the
fin pitch. In each case the overall efficiency is defined as

_ 4 q:
Mo

= = 3.103
dnax — hAB, (3.103)

where ¢, is the total heat rate from the surface area A, associated with both the fins and the
exposed portion of the base (often termed the prime surface). If there are N fins in the array,
each of surface area Ay, and the area of the prime surface is designated as A, the total
surface area is

A, =NA+ A, (3.104)
The maximum possible heat rate would result if the entire fin surface, as well as the
exposed base, were maintained at 7.

The total rate of heat transfer by convection from the fins and the prime (unfinned)
surface may be expressed as

q, = Nn;hAs0, + hA,0, (3.105)

where the convection coefficient % is assumed to be equivalent for the finned and prime sur-
faces and 7, is the efficiency of a single fin. Hence

(=)0, (3.106)

g, = hINn,A;+ (A, — NAD16, = hA,[l —~

(a) (b)

FicUrE 3.21 Representative fin arrays. (a) Rectangular fins.
(b) Annular fins.
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Substituting Equation (3.106) into (3.103), it follows that

NA;
n,=1-——(0-m) (3.107)
t

From knowledge of 7,, Equation 3.103 may be used to calculate the total heat rate for a fin
array.

Recalling the definition of the fin thermal resistance, Equation 3.88, Equation 3.103
may be used to infer an expression for the thermal resistance of a fin array. That is,

0, 1
=4 " mhA (3.108)
where R, , is an effective resistance that accounts for parallel heat flow paths by conduc-
tion/convection in the fins and by convection from the prime surface. Figure 3.22 illustrates
the thermal circuits corresponding to the parallel paths and their representation in terms of
an effective resistance.

If fins are machined as an integral part of the wall from which they extend (Figure 3.22a),
there is no contact resistance at their base. However, more commonly, fins are manufactured
separately and are attached to the wall by a metallurgical or adhesive joint. Alternatively, the
attachment may involve a press t, for which the fins are forced into slots machined on

the wall material. In such cases (Figure 3.22b), there is a thermal contact resistance R, ., which
j .
(NnyhAY
9f—>
/%qu
T,0— ——-oT
% b
T\b_, K>%
VVWWWA -
[h(A, ~NA)]
J\J — —>4;
Tye VVWVWWA oT.,
To b (m,hA)!
(@)
R
R/.INA,, (NmhAY
CIfF —
Ty Nay
L} —>q, T, ﬁ L o
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—H>
[h(A, ~NA)T
[
T, h
1 -
Tyo VVVWWWA o7,
(Myh A
0)

FIGURE 3.22  Fin array and thermal circuit. (a) Fins that are integral with the base.
(b) Fins that are attached to the base.
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may adversely influence overall thermal performance. An effective circuit resistance may
again be obtained, where, with the contact resistance,

0, 1
Rio=> = 3.109
t,0(c) q, no(c)hA, ( )
It is readily shown that the corresponding overall surface efficiency is
Ny =1 ———1——= (3.110a)
(c) Al Cl
where
Ci =1+ nhA(R].JA.;) (3.110b)

In manufacturing, care must be taken to render R, . < R, .

ExampPLE 3.10

The engine cylinder of a motorcycle is constructed of 2024-T6 aluminum alloy and is of
height H = 0.15 m and outside diameter D = 50 mm. Under typical operating conditions
the outer surface of the cylinder is at a temperature of 500 K and is exposed to ambient air
at 300 K, with a convection coefficient of 50 W/m?- K. Annular fins are integrally cast with
the cylinder to increase heat transfer to the surroundings. Consider five such fins, which are
of thickness t = 6 mm, length L = 20 mm, and equally spaced. What is the increase in heat
transfer due to use of the fins?

SOLUTION
|

Known: Operating conditions of a finned motorcycle cylinder.

Find: Increase in heat transfer associated with using fins.

Schematic:
| Engine cylinder
3 ! cross section
I | (2024 T6 Al alloy)
S
! T, = 500 K
H=0.15m
| 12 T. =300 K
| t=6mm h =50 W/m?K
| ¥ P
i <«—— Air
; t—r; =25 mm -
| !:— L=20mm
——>—r, =45 mm
Assumptions:

1. Steady-state conditions.

2. One-dimensional radial conduction in fins.

3. Constant properties.
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4. Negligible radiation exchange with surroundings.

5. Uniform convection coefficient over outer surface (with or without fins).
Properties: Table A.1, 2024-T6 aluminum (7 = 400 K): £ = 186 W/m- K.

Analysis:  With the fins in place, the heat transfer rate is given by Equation 3.106

NA,
q,=hA, |1 —7(1 =) |6,
t

where A; = 2m(r3, — r) = 27[(0.048 m)> — (0.025 m)*] = 0.0105 m* and, from Equa-
tion 3.104, A, = NA; + 27ri(H — Nt) = 0.0527 m? + 277(0.025 m) [0.15 m — 0.03m] =
00716 m*. With ro/r, = 192, L =0023m, A, =1380X 10 *m’>, we obtain
L*(h/kA,)"* = 0.15. Hence, from Figure 3.20, the fin efficiency is m; = 0.95.
With the fins, the total heat transfer rate is then

_0.0527 m?
0.0716 m?

Without the fins, the convection heat transfer rate would be

g, =50 W/m*-K X 0.0716 m? [1 (0.05)] 200K = 690 W

Guo = h(2mrH)B, = 50 W/m? - K2 X 0.025m X 0.15 m)200 K = 236 W

Hence
Ag=q,— Gy, =454 W <

Comments:

1. Although the fins significantly increase heat transfer from the cylinder, considerable
improvement could still be obtained by increasing the number of fins. We assess this
possibility by computing ¢, as a function of N, first by fixing the fin thickness at
t = 6 mm and increasing the number of fins by reducing the spacing between fins. Pre-
scribing a fin clearance of 2 mm at each end of the array and a minimum fin gap of
4 mm, the maximum allowable number of fins is N = H/S = 0.15 m/(0.004 + 0.006)
m = 15. The parametric calculations yield the following variation of ¢, with N:

1600

1400 °
t=6 mm L4

1200 e

4, W)
[ ]

1000

800 .

600
5

7 9 11 13 15
Number of fins, N

The number of fins could also be increased by reducing the fin thickness. If the fin gap
is fixed at (S — ) = 4 mm and manufacturing constraints dictate a minimum allowable
fin thickness of 2 mm, up to N = 25 fins may be accommodated. In this case the para-
metric calculations yield
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3000

2500

~. 2000

q, (W

1500

1000

(S—1)=4mm o

500
5

early with increasing N.

F

ExampPLE 3.11

Without

10

finned a
heat sink

15 20 25

Number of fins, N

The foregoing calculations are based on the assumption that 4 is not affected by a
reduction in the fin gap. The assumption is reasonable as long as there is no interaction
between boundary layers that develop on the opposing surfaces of adjoining fins. Note
that, since NA,;> 2mr(H — Nt) for the prescribed conditions, g, increases nearly lin-

2. The Models/Extended Surfaces option in the Advanced section of IHT provides ready-
to-solve models for straight, pin, and circular fins, as well as for fin arrays. The models
include the efficiency relations of Figures 3.19 and 3.20 and Table 3.5.

In Example 1.5, we saw that to generate an electrical power of P = 9 W, the temperature of
the PEM fuel cell had to be maintained at 7, = 56.4°C, which required removal of 11.25 W
from the fuel cell and a cooling air velocity of V =9.4m/s for T,, = 25°C. To provide
these convective conditions, the fuel cell is centered in a 50 mm X 26 mm rectangular duct,
with 10-mm gaps between the exterior of the 50 mm X 50 mm X 6 mm fuel cell and the
top and bottom of the well-insulated duct wall. A small fan, powered by the fuel cell, is
used to circulate the cooling air. Inspection of a particular fan vendor’s data sheets suggests
that the ratio of the fan power consumption to the fan’s volumetric flow rate is
P;/¥,;= C = 1000 W/(m’/s) for the range 10™* =V, =10">ms.

W—>
T
N H
77
s
e

With

VVvVY finned
MW( 4,‘/ heat sink
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1. Determine the net electric power produced by the fuel cell-fan system, P, = P — P;.

2. Consider the effect of attaching an aluminum (k = 200 W/m-K) finned heat sink,
of identical top and bottom sections, onto the fuel cell body. The contact joint has
a thermal resistance of R/, = 107> m?-K/W, and the base of the heat sink is
of thickness 7, = 2 mm. Each of the N rectangular fins is of length L, = 8 mm and
thickness #, = 1 mm, and spans the entire length of the fuel cell, L. = 50 mm. With the
heat sink in place, radiation losses are negligible and the convective heat transfer coef-
ficient may be related to the size and geometry of a typical air channel by an
expression of the form h = 1.78 k,;, (L; + a)/(L;+a), where a is the distance
between fins. Draw an equivalent thermal circuit for part 2 and determine the total
number of fins needed to reduce the fan power consumption to half of the value
found in part 1.

SOLUTION

Known: Dimensions of a fuel cell and finned heat sink, fuel cell operating temperature,
rate of thermal energy generation, power production. Relationship between power con-
sumed by a cooling fan and the fan airflow rate. Relationship between the convection coef-
ficient and the air channel dimensions.

Find:
1. The net power produced by the fuel cell-fan system when there is no heat sink.
2. The number of fins needed to reduce the fan power consumption found in part 1 by 50%.

Schematic:

s |

% —> T | —

| R : R

“’i:\:\*j\(;:;‘:; .‘j‘:;:;’r I BRI

Fan H=26mm| | LA
Finned heat sink
Finned heat sink T.=25°C,V
Air L= 8 mm

t,=6mm| | Fuel cell, T, = 56.4°C

N
t,=2 mm =1 mm
b | 4 |

[e————— W=W,=50mm N —=
Section A-A
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Assumptions:

1.
2.

AU w

Steady-state conditions.

Negligible heat transfer from the edges of the fuel cell, as well as from the front and
back faces of the finned heat sink.

One-dimensional heat transfer through the heat sink.
Adiabatic fin tips.

Constant properties.

Negligible radiation when the heat sink is in place.

Properties: Table A4. air (T =300K): ky =00263 W/m-K, ¢, = 1007 J/kg-K,
p = 1.1614 kg/m’.

Analysis:

1.

The volumetric flow rate of cooling air is V, = VA, where A, = W (H —1,) is the cross-
sectional area of the flow region between the duct walls and the unfinned fuel cell.
Therefore,

V,= VIW(H — 1)] = 9.4 m/s X [0.05 m X (0.026 m — 0.006 m)]
=94 X 1073 m¥/s
and

Pp=P— CY,=9.0W — 1000 W/(m*/s) X 9.4 X 107 m¥s =— 0.4 W <

With this arrangement, the fan consumes more power than is generated by the fuel
cell, and the system cannot produce net power.

To reduce the fan power consumption by 50%, the volumetric flow rate of air must be
reduced to V, = 4.7 X 1073 m?/s. The thermal circuit includes resistances for the con-
tact joint, conduction through the base of the finned heat sink, and resistances for the
exposed base of the finned side of the heat sink, as well as the fins.

RxJ(N)

The thermal resistances for the contact joint and the base are
R,.=R/2LW,= (10" m*- K/W)/(2 X 0.05 m X 0.05 m) = 0.2 K/W
and

R, e = 1,/(2kLW,) = (0.002 m)/(2 X 200 W/m - K X 0.05 m X 0.05 m)
= 0.002 K/W
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where the factors of two account for the two sides of the heat sink assembly. For the
portion of the base exposed to the cooling air, the thermal resistance is

R, = 1/[h @W, — NtpL.] = 1/[h X (2 X 0.05 m — N X 0.001 m) X 0.05 m]

which cannot be evaluated until the total number of fins on both sides, N, and & are
determined.

For a single fin, R, ; = 6,/q;, where, from Table 3.4 for a fin with an insulated fin
tip, R, ; = (hPkA,)""/tanh(mLy). In our case, P = 2(L, + t) = 2 X (0.05 m + 0.001 m) =
0.102m, A, = L;= 0.05 m X 0.001 m = 0.00005 m*, and

m ="V hP/kA, = [h X 0.102 m/(200 W/m - K X 0.00005 m?)]"?
Hence,

_ (hX0.102 m X 200 W/m - K X 0.00005 m*)~"?
L tanh(m X 0.008 m)

and for N fins, R, ;n) = R, ;/N. As for R,;, R, ; cannot be evaluated until & and N are deter-
mined. Also, & depends on a, the distance between fins, which in turn depends on N,
according to a = 2W, — Nt)/N = (2 X 0.05 m — N X 0.001 m)/N. Thus, specification of
N will make it possible to calculate all resistances. From the thermal resistance network, the
total thermal resistance is Ry, = R, + R pye + Requivs Where Roquiy = [R,, " + R, 17"

The equivalent fin resistance, R, corresponding to the desired fuel cell temper-
ature is found from the expression

T.-T, T,— T,
Ro R+ Ry +R

1,base equiv

in which case,

T.—T.
Requiv = T - (Rt,c + Rt,base)

= (56.4°C — 25°C)/11.25 W — (0.2 + 0.002) K/W = 2.59 K/W

For N = 22, the following values of the various parameters are obtained: a = 0.0035 m,
h=191Wm*K,m=139m ", R, = 294 K/W, R,, = 13.5 K/W, R.;, = 241 K/W,
and R, = 2.61 K/W, resulting in a fuel cell temperature of 54.4°C. Fuel cell temperatures
associated with N = 20 and N = 24 fins are 7, = 58.9°C and 50.7°C, respectively.

The actual fuel cell temperature is closest to the desired value when N = 22. There-
fore, a total of 22 fins, 11 on top and 11 on the bottom, should be specified, resulting in

Pu=P—P;=90W—47TW=43W <

Comments:

1. The performance of the fuel cell-fan system is enhanced significantly by combining
the finned heat sink with the fuel cell. Good thermal management can transform an
impractical proposal into a viable concept.

2. The temperature of the cooling air increases as heat is transferred from the fuel cell. The
temperature of the air leaving the finned heat sink may be calculated from an overall
energy balance on the airflow, which yields T, = T; + g/(pc,¥)). For part 1, T, = 25°C +
10.28 W/(1.1614 kg/m® X 1007 J/kg-K X 9.4 X 107 m*/s) = 25.9°C. For part 2, the
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outlet air temperature is 7, = 27.0°C. Hence, the operating temperature of the fuel cell
will be slightly higher than predicted under the assumption that the cooling air tempera-
ture is constant at 25°C and will be closer to the desired value.

3. For the conditions in part 2, the convection heat transfer coefficient does not vary with
the air velocity. The insensitivity of the value of 4 to the fluid velocity occurs fre-
quently in cases where the flow is confined within passages of small cross-sectional
area, as will be discussed in detail in Chapter 8. The fin’s influence on increasing or
reducing the value of & relative to that of an unfinned surface should be taken into
account in critical applications.

4. A more detailed analysis of the system would involve prediction of the pressure drop
associated with the fan-induced flow of air through the gaps between the fins.

5. The adiabatic fin tip assumption is valid since the duct wall is well insulated.

F

3.7 The Bioheat Equation

The topic of heat transfer within the human body is becoming increasingly important as new
medical treatments are developed that involve extreme temperatures [16] and as we explore
more adverse environments, such as the Arctic, underwater, or space. There are two main
phenomena that make heat transfer in living tissues more complex than in conventional
engineering materials: metabolic heat generation and the exchange of thermal energy
between flowing blood and the surrounding tissue. Pennes [17] introduced a modification to the
heat equation, now known as the Pennes or bioheat equation, to account for these effects.
The bioheat equation is known to have limitations, but it continues to be a useful tool for
understanding heat transfer in living tissues. In this section, we present a simplified version
of the bioheat equation for the case of steady-state, one-dimensional heat transfer.

Both the metabolic heat generation and exchange of thermal energy with the blood can
be viewed as effects of thermal energy generation. Therefore, we can rewrite Equation 3.44
to account for these two heat sources as

4T | Gn ta, 0
dx* k
where g,, and g, are the metabolic and perfusion heat source terms, respectively. The perfu-
sion term accounts for energy exchange between the blood and the tissue and is an energy
source or sink according to whether heat transfer is from or to the blood, respectively. The
thermal conductivity has been assumed constant in writing Equation 3.111.

Pennes proposed an expression for the perfusion term by assuming that within any
small volume of tissue, the blood flowing in the small capillaries enters at an arterial tem-
perature, T,, and exits at the local tissue temperature, 7. The rate at which heat is gained by
the tissue is the rate at which heat is lost from the blood. If the perfusion rate is @ (m*/s of
volumetric blood flow per m? of tissue), the heat lost from the blood can be calculated from
Equation 1.12e, or on a unit volume basis,

(3.111)

4y = wpycy(T, — T) (3.112)

where p, and ¢, are the blood density and specific heat, respectively. Note that wp,, is the
blood mass flow rate per unit volume of tissue.
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Substituting Equation 3.112 into Equation 3.111, we find

2 + wpye(T, —
d’T | Gnt @ o(Ta— 1) —0 (3.113)
dx* k
Drawing on our experience with extended surfaces, it is convenient to define an excess
temperature of the foorm 6 =7 — T, — g,,/wp,c,. Then, if we assume that 7, ¢,,, w, and the
blood properties are all constant, Equation 3.113 can be rewritten as

o
dx*
where m* = wp,c,/k. This equation is identical in form to Equation 3.69. Depending on the

form of the boundary conditions, it may therefore be possible to use the results of Table 3.4
to estimate the temperature distribution within the living tissue.

EXAMPLE 3.12

In Example 1.7, the temperature at the inner surface of the skin/fat layer was given as
35°C. In reality, this temperature depends on the existing heat transfer conditions, includ-
ing phenomena occurring farther inside the body. Consider a region of muscle with a
skin/fat layer over it. At a depth of L,, = 30 mm into the muscle, the temperature can be
assumed to be at the core body temperature of 7, = 37°C. The muscle thermal conductivity
is k,, = 0.5 W/m+K. The metabolic heat generation rate within the muscle is ¢,, = 700 W/m”.
The perfusion rate is @ = 0.0005 s~ '; the blood density and specific heat are p, = 1000
kg/m® and ¢, = 3600 J/kg- K, respectively, and the arterial blood temperature T, is the
same as the core body temperature. The thickness, emissivity, and thermal conductivity of
the skin/fat layer are as given in Example 1.7; perfusion and metabolic heat generation
within this layer can be neglected. We wish to predict the heat loss rate from the body and
the temperature at the inner surface of the skin/fat layer for air and water environments of
Example 1.7.

-m0=0 (3.114)

SOLUTION

I

Known: Dimensions and thermal conductivities of a muscle layer and a skin/fat layer.
Skin emissivity and surface area. Metabolic heat generation rate and perfusion rate within
the muscle layer. Core body and arterial temperatures. Blood density and specific heat.
Ambient conditions.

Find: Heat loss rate from body and temperature at inner surface of the skin/fat layer.

Schematic:
Muscle Skin/Fat £=0.95
T.=37°C— & ~ 700 Wim? {— T, T, =297 K—
9
kg = 0.3 W/imK

k, = 0.5 W/m-K ——

=0.0005 57! T T T I —297K
I = 2 Wim?K (air)
} | Air or 7 =200 Wim?K (water)
L,=30mm Lg;=3mm water

—»x
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Assumptions:
1. Steady-state conditions.
2. One-dimensional heat transfer through the muscle and skin/fat layers.

3. Metabolic heat generation rate, perfusion rate, arterial temperature, blood properties,
and thermal conductivities are all uniform.

4. Radiation heat transfer coefficient is known from Example 1.7.

5. Solar irradiation is negligible.

Analysis:  We will combine an analysis of the muscle layer with a treatment of heat
transfer through the skin/fat layer and into the environment. The rate of heat transfer
through the skin/fat layer and into the environment can be expressed in terms of a total
resistance, R, as

Ti - Too
Riot

q= o))

As in Example 3.1 and for exposure of the skin to the air, R, accounts for conduction

through the skin/fat layer in series with heat transfer by convection and radiation, which act
in parallel with each other. Thus,

L -1 L
Rtotz Sf_|_ L_FL =l 7“_}_ 1
koA \1/hA " 1nA A\ky  h + h,

Using the values from Example 1.7 for air,

_ 1 <0.003m N 1
1.8 m>\03W/m-K (2 +5.9)W/m?-K

For water, with i, = 0 and & = 200 W/m?*K, R, = 0.0083 W/m?-K.

Heat transfer in the muscle layer is governed by Equation 3.114. The boundary condi-
tions are specified in terms of the temperatures, 7. and T;, where T; is, as yet, unknown. In
terms of the excess temperature 6, the boundary conditions are then

> =0.076 K/'W

tot

00)=T.—T,— " =9 and 6L,)=T—T,—I" =4
WPKC wWPKC),

Since we have two boundary conditions involving prescribed temperatures, the solution for
6 is given by case C of Table 3.4,
6 _ (0,/6,)sinh mx + sinh m(L,, — x)

0, sinh mL,,

The value of g, given in Table 3.4 would correspond to the heat transfer rate at x = 0, but
this is not of particular interest here. Rather, we seek the rate at which heat leaves the muscle
and enters the skin/fat layer so that we can equate this quantity with the rate at which heat is
transferred through the skin/fat layer and into the environment. Therefore, we calculate the
heat transfer rate at x = L, as

de
x=L,, " dx

dar
x=L,, " dx

Aif (0,/0,) coshmL,, — 1
= TK,AMU,

x=L, sinh mL,,

(2)
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Combining Equations 1 and 2 yields
(6,/6.)coshmL,, —1  T,—T,

1

—k Ab, cost
sinh mL,, Ry

This expression can be solved for T}, recalling that T; also appears in 6;.

WPRCy

sinh mL,, + k,,AmR,,, cosh mL,,

T,, sinh L, + k,,,Athm[ec + <Ta 4 m >cosh ;hLm]
T, =

1

where

=V wp,e,lk, = [0.0005 s~ X 1000 kg/m?® X 3600 J/kg - K/0.5 W/m - K]'?

=60m™!
sinh (mL,,) = sinh (60 m~! X 0.03m) = 2.94
and
cosh (iL,,) = cosh(60m~! X 0.03m) = 3.11
0 =7 - - In_ G _ 700 W/m®
0 wpy WPy 0.0005 s~ X 1000 kg/m* X 3600 J/kg - K
=—0.380 K

The excess temperature can be expressed in kelvins or degrees Celsius, since it is a temper-
ature difference.
Thus, for air:

{24°C X294+ 0.5W/m-K X 1.8 m?* X 60 m ™"
X 0.076 K/W[—0.389°C + (37°C + 0.389°C) X 3.11]}
2.94+0.5W/m-K X 1.8m* X 60m™' X 0.076 K/W X 3.11

=34.8°C <

i

This result agrees well with the value of 35°C that was assumed for Example 1.7. Next we
can find the heat loss rate:

_T,—T. _34.8°C —24°C _

1= "R 006 Kkw W =

Again this agrees well with the previous result. Repeating the calculation for water, we find
T,=28.2°C <

qg=>514W <

Here the calculation of Example 1.7 was not accurate because it incorrectly assumed that
the inside of the skin/fat layer would be at 35°C. Furthermore, the skin temperature in this
case would be only 25.4°C based on this more complete calculation.

Comments:

1. In reality, our bodies adjust in many ways to the thermal environment. For example, if
we are too cold, we will shiver, which increases our metabolic heat generation rate.
If we are too warm, the perfusion rate near the skin surface will increase, locally rais-
ing the skin temperature to increase heat loss to the environment.
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2. Measuring the true thermal conductivity of living tissue is very challenging, first
because of the necessity of making invasive measurements in a living being, and sec-
ond because it is difficult to experimentally separate the effects of heat conduction and
perfusion. It is easier to measure an effective thermal conductivity that would account
for the combined contributions of conduction and perfusion. However, this effective
conductivity value necessarily depends on the perfusion rate, which in turn varies with
the thermal environment and physical condition of the specimen.

3. The calculations can be repeated for a range of values of the perfusion rate, and the depen-
dence of the heat loss rate on the perfusion rate is illustrated below. The effect is stronger
for the case of the water environment, because the muscle temperature is lower and there-
fore the effect of perfusion by the warm arterial blood is more pronounced.

700

600

500

400 .
Water environment

g
¥ 300
Air environment
200
100
0
0 0.0002 0.0004 0.0006 0.0008 0.001

o (s

F

3.8 Thermoelectric Power Generation

As noted in Section 1.6, approximately 60% of the energy consumed globally is wasted in the
form of low-grade heat. As such, an opportunity exists to harvest this energy stream and con-
vert some of it to useful power. One approach involves thermoelectric power generation,
which operates on a fundamental principle termed the Seebeck effect that states when a tem-
perature gradient is established within a material, a corresponding voltage gradient is induced.
The Seebeck coefcient S is a material property representing the proportionality between volt-
age and temperature gradients and, accordingly, has units of volts/K. For a constant property
material experiencing one-dimensional conduction, as illustrated in Figure 3.23a,

(B, —E)=8(T,— T, (3.115)

Electrically conducting materials can exhibit either positive or negative values of the See-
beck coefficient, depending on how they scatter electrons. The Seebeck coefficient is very
small in metals, but can be relatively large in some semiconducting materials.

If the material of Figure 3.23a is installed in an electric circuit, the voltage difference
induced by the Seebeck effect can drive an electric current /, and electric power can be
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FIGURE 3.23 Thermoelectric phenomena. (a) The Seebeck effect.
(b) A simplified thermoelectric circuit consisting of one pair (N = 1) of
semiconducting pellets.

generated from waste heat that induces a temperature difference across the material. A sim-
plified thermoelectric circuit, consisting of two pellets of semiconducting material, is
shown in Figure 3.23b. By blending minute amounts of a secondary element into the pellet
material, the direction of the current induced by the Seebeck effect can be manipulated.
The resulting p- and n-type semiconductors, which are characterized by positive and nega-
tive Seebeck coefficients, respectively, can be arranged as shown in the figure. Heat is
supplied to the top and lost from the bottom of the assembly, and thin metallic conductors
connect the semiconductors to an external load represented by the electrical resistance,
R, 1000 Ultimately, the amount of electric power that is produced is governed by the heat
transfer rates to and from the pair of semiconducting pellets shown in Figure 3.23b.

In addition to inducing an electric current /, thermoelectric effects also induce the
generation or absorption of heat at the interface between two dissimilar materials. This heat
source or heat sink phenomenon is known as the Peltier effect, and the amount of heat absorbed
gp is related to the Seebeck coefficients of the adjoining materials by an equation of the form

qp=1(S, — S)T =1S,.,T (3.116)

where the individual Seebeck coefficients in the preceding expression, Sp and S, correspond
to the p- and n-type semiconductors, and the differential Seebeck coefficient is S, ,, = S, - S,,.
Temperature is expressed in kelvins in Equation 3.116. The heat absorption is positive (gen-
eration is negative) when the electric current flows from the n-type to the p-type semiconduc-
tor. Hence, in Figure 3.23b, Peltier heat absorption occurs at the warm interface between the
semiconducting pellets and the upper, thin metallic conductor, while Peltier heat generation
occurs at the cool interface between the pellets and the lower conductor.

When T, > T,, the heat transfer rates to and from the device, ¢, and g,, respectively, may be
found by solving the appropriate form of the energy equation. For steady-state, one-dimensional
conduction within the assembly of Figure 3.23b the analysis proceeds as follows.

Assuming the thin metallic connectors are of relatively high thermal and electrical con-
ductivity, Ohmic dissipation occurs exclusively within the semiconducting pellets, each of
which has a cross-sectional area A, ,. The thermal resistances of the metallic conductors are
assumed to be negligible, as is heat transfer within any gas trapped between the semicon-
ducting pellets. Recognizing that the electrical resistance of each of the two pellets may be
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expressed as R, = p, (2L)/A., where p, is the electrical resistivity of the semiconducting
material, Equation 3.43 may be used to find the uniform volumetric generation rate within
each pellet

12 e,.s
g= A’Z’ (3.117)

Assuming negligible contact resistances and identical, as well as constant, thermophysical
properties in each of the two pellets (with the exception being S, = —S,,), Equation C.7 may be
used to write expressions for the heat conduction out of and into the semiconducting material

k, Pp,,L
qx=L)=2A_, 2L (T, — T, + T?S (3.118a)
k, Pp, L

The factor of 2 outside the brackets accounts for heat transfer in both pellets and, as evi-
dent, g(x = L) > g(x = —-L).

Because of the Peltier effect, g, and g, are not equal to the heat transfer rates into and
out of the pellets as expressed in Equations 3.118a,b. Incorporating Equation 3.116 in an
energy balance for a control surface about the interface between the thin metallic conductor
and the semiconductor material at x = —L yields

¢ =qx=—-L)+qp, =qx=—-L)+1S,,T, (3.119)
Similarly at x = L,
¢ =qx=L)—1IS,,T,=qx=L)+IS,,T, (3.120)
Combining Equations 3.118b and 3.119 yields
C. Sk.X' Izpt’ SL
q, = L (T'—Ty) +1S,,T, =2 —— (3.121)
Similarly, combining Equations 3.118a and 3.120 gives
AF SkS Izpe SL
Gp=—— (T —T)+1S,,T, +2—— (3.122)

L

From an overall energy balance on the thermoelectric device, the electric power produced
by the Seebeck effect is

P=q, —q (3.123)
Substituting Equations 3.121 and 3.122 into this expression yields

Ip,.L

P=1IS,(T\— T, —4 =1S,,(T,— T, — PR, (3.124)

where R, = 2R, .

The voltage difference induced by the Seebeck effect is relatively small for a single pair of
semiconducting pellets. To amplify the voltage difference, thermoelectric modules are fabri-
cated, as shown schematically in Figure 3.24a where N >1 pairs of semiconducting pellets are
wired in series. Thin layers of a dielectric material, usually a ceramic, sandwich the module to
provide structural rigidity and electrical insulation from the surroundings. Assuming the
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FIGURE 3.24  Thermoelectric module. (a) Cross-section of a module consist-
ing of N semiconductor pairs. (b) Equivalent thermal circuit for a convectively
heated and cooled module.

thermal resistances of the thin ceramic layers are negligible, g, ¢,, and the total module elec-
tric power, Py, can be written by modifying Equations 3.121, 3.122, 3.124 as

1

TR (Ty = T) + 1Sy e Ty = I*Re it (3.125)
t,cond,mod
1
= R, cond mod (Ty = T) + 1S, e T + IRy o (3.126)
,cond, mo
Py=q1 = @ =1Spet(Ty = Tp) = 21’ R, (3.127)

where S, , i = NS,.,, and R, .x = NR,; are the effective Seebeck coefficient and the total
internal electrical resistance of the module while R, ,.qmoa = L/NAk, is the conduction
resistance associated with the module’s p-n semiconductor matrix. An equivalent thermal
circuit for a convectively heated and cooled thermoelectric module is shown in Figure 3.245.
If heating or cooling were to be applied by radiation or conduction, the resistance network

outside of the thermoelectric module portion of the circuit would be modified accordingly.
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Returning to the single thermoelectric circuit of Figure 3.23b, the efficiency is defined
as My = Plq,. From Equations 3.121 and 3.124, it can be seen that efficiency depends on
the electrical current in a complex manner. However, the efficiency can be maximized by
adjusting the current through changes in the load resistance. The resulting maximum effi-
ciency is given as [18]

:<1_T2> VI1+ZT — 1 (3.128)
NrE T — .
) N1+ ZT + Ty/T,
where T = (T, +T1T)/2,§=S§,=—S,, and
2
) (3.129)
pe,sks

Since the efficiency increases with increasing ZT, ZT may be seen as a dimensionless
gure of merit associated with thermoelectric generation [19]. As ZT — o, 1y —
(1 —=T7,/T)) =1 — T,/T,) = n- where 1 is the Carnot efficiency. As discussed in Section
1.3.2, the Carnot efficiency and, in turn, the thermoelectric efficiency cannot be determined
until the appropriate hot and cold temperatures are calculated from a heat transfer analysis.

Because ZT is defined in terms of interrelated electrical and thermal conductivities,
extensive research is being conducted to tailor the properties of the semiconducting pellets,
primarily by manipulating the nanostructure of the material so as to independently control
phonon and electron motion and, in turn, the thermal and electrical conductivities of the mater-
ial. Currently, ZT values of approximately unity at room temperature are readily achieved.
Finally, we note that thermoelectric modules can be operated in reverse; supplying electric
power fo the module allows one to control the heat transfer rates to or from the outer ceramic
surfaces. Such thermoelectric chillers or thermoelectric heaters are used in a wide variety of
applications. A comprehensive discussion of one-dimensional, steady-state heat transfer model-
ing associated with thermoelectric heating and cooling modules is available [20].

ExampPLE 3.13

An array of M = 48 thermoelectric modules is installed on the exhaust of a sports car. Each
module has an effective Seebeck coefficient of S, , . = 0.1435 V/K, and an internal electrical
resistance of R, . = 4 (). In addition, each module is of width and length W = 54 mm and con-
tains N = 100 pairs of semiconducting pellets. Each pellet has an overall length of 2L = 5 mm
and cross-sectional area A, = 1.2 X 107 m? and is characterized by a thermal conductivity of
k, = 1.2 W/m*K. The hot side of each module is exposed to exhaust gases at T, ; = 550°C with
h, = 40 W/m*- K, while the opposite side of each module is cooled by pressurized water at
T.., = 105°C with h, = 500 W/m?- K. If the modules are wired in series, and the load resistance
iS R, 10, = 400 €, what is the electric power harvested from the hot exhaust gases?

Pressurized water
T.,=105°C
hy = 500 W/m2.K

A s N N s N o s N\ N oL = 5 mm
JOLELTD
A FF—
> e
Y

Exhaust gas
T., =550°C
hy = 40 W/m2.K

—

W =54 mm
M = 48 thermoelectric modules \ J

N = 100 pellet pairs
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SOLUTION

Known: Thermoelectric module properties and dimensions, number of semiconductor
pairs in each module, and number of modules in the array. Temperature of exhaust gas and
pressurized water, as well as convection coefficients at the hot and cold module surfaces.
Modules are wired in series, and the electrical resistance of the load is known.

Find: Power produced by the module array.

Schematic:

Pressurized water — 2L=5mm
e

Lp=105C [ 2 = 500 Wimi-K l —  }— w=54mm
! R

I T T T IT IT IT IT
4

1

Exhaust gas —> L hy = 40 W/mZ2.K —
— 400 Q

Jload =
T, = 550°C —> — o

Pressurized water \E M=148 Thermoelectric modules
—_ N = 100 semiconductor pairs per module
T,.,=105°C

1

Assumptions:
1. Steady-state conditions.
2. One-dimensional heat transfer.

w

Constant properties.

b

Negligible electrical and thermal contact resistances.

g

Negligible radiation exchange and negligible heat transfer within the gas inside the
modules.

6. Negligible conduction resistance posed by the metallic contacts and ceramic insulators
of the modules.

Analysis:  We begin by analyzing a single module. The conduction resistance of each
module’s semiconductor array is

L 25 X107%m
J = — 1736 K/W
reondmod NA L ko 100X 1.2 X 1075 m? X 1.2 W/m - K
From Equation 3.125,
_ 1 _ (1 —T)
q1 = Rroomaon (T, = T) + 1S, et Ty — IRy oip = 1736 KW
+1X01435 VKX T, —I* X4 Q) (1)
while from Equation 3.126,
_ 1 _ (I —T
P Ricontimod (T = 1)+ LSy To I Rean = 75050y

+I1X0.1435 VIK X T, + I? X 4 Q) ()
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At the hot surface, Newton’s law of cooling may be written as
g, = hWWA(T,., — T;) = 40 W/m*- K X (0.054 m)* X [(550 + 273) K — T}] 3)
whereas at the cool surface,
G, = hWX(T, — T..,) = 500 W/m?- K X (0.054 m)* X [T, — (105 + 273)K]  (4)

Four equations have been written that include five unknowns, ¢,, ¢,, T}, T», and I. An addi-
tional equation is obtained from the electrical circuit. With the modules wired in series, the
total electric power produced by all M = 48 modules is equal to the electric power dissipated
in the load resistance. Equation 3.127 yields

Poy=MPy=MIIS, , (T, — Ty) — 2I°R, o] = 48[I X 0.1435 V/K X (T, — Ty) — 21> X 4 Q] (5)

Since the electric power produced by the thermoelectric module is dissipated in the electri-
cal load, it follows that

Py = IPRyypq = 17 X 400 Q (6)
Equations 1 through 6 may be solved simultaneously, yielding P, = 46.9 W. <

Comments:

1. Equations 1 through 5 can be readily written by inspecting the equivalent thermal cir-
cuit of Figure 3.24b.

2. The module surface temperatures are 7, = 173°C and T, = 134°C, respectively. If
these surface temperatures were specified in the problem statement, the electric power
could be obtained directly from Equations 5 and 6. In any practical design of a thermo-
electric generator, however, a heat transfer analysis must be conducted to determine
the power generated.

3. Power generation is very sensitive to the convection heat transfer resistances. For
hy = hy,— o, P, =5900W. To reduce the thermal resistance between the module
and fluid streams, finned heat sinks are often used to increase the temperature differ-
ence across the modules and, in turn, increase their power output. Good thermal man-
agement and design are crucial to maximizing the power generation.

4. Harvesting the thermal energy contained in the exhaust with thermoelectrics can elimi-
nate the need for an alternator, resulting in an increase in the net power produced by
the engine, a reduction in the automobile’s weight, and an increase in gas mileage of
up to 10%.

5. Thermoelectric modules, operating in the heating mode, can be embedded in car seats
and powered by thermoelectric exhaust harvesters, reducing energy costs associated with
heating the entire passenger cabin. The seat modules can also be operated in the cooling
mode, potentially eliminating the need for vapor compression air conditioning. Common
refrigerants, such as R134a, are harmful greenhouse gases, and are emitted into the
atmosphere by leakage through seals and connections, and by catastrophic leaks due to
collisions. Replacing automobile vapor compression air conditioners with personalized
thermoelectric seat coolers can eliminate the equivalent of 45 million metric tons of CO,
released into the atmosphere every year in the United States alone.



3.9 m Micro- and Nanoscale Conduction 189

3.9 Micro- and Nanoscale Conduction

We conclude the discussion of one-dimensional, steady-state conduction by considering situ-
ations for which the physical dimensions are on the order of, or smaller than, the mean free
path of the energy carriers, leading to potentially important nano- or microscale effects.

3.9.1 Conduction Through Thin Gas Layers

Figure 3.25 shows instantaneous trajectories of gas molecules between two isothermal, solid
surfaces separated by a distance L. As discussed in Section 1.2.1, even in the absence of bulk
fluid motion individual molecules continually impinge on the two solid boundaries that are
held at uniform surface temperatures 7;; and 7,, respectively. The molecules also collide
with each other, exchanging energy within the gaseous medium. When the thickness of the
gas layer is large, L = L, (Figure 3.25a), a particular gas molecule will collide more fre-
quently with other gas molecules than with either of the solid boundaries. Alternatively, for a
very thin gas layer, L = L, < L, (Figure 3.25b), the probability of a molecule striking either
of the solid boundaries is high relative to the likelihood of it colliding with another molecule.

The energy content of a gas molecule is associated with its translational, rotational, and
vibrational kinetic energies. It is this molecular-scale kinetic energy that ultimately defines
the temperature of the gas, and collisions between individual molecules determine the
value of the thermal conductivity, as discussed in Section 2.2.1. However, the manner in
which a gas molecule is reflected or scattered from the solid walls also affects its level of
kinetic energy and, in turn, its temperature. Hence, wall-molecule collisions can become
important in determining the heat rate, g, as L/A;, becomes small.

The collision with and subsequent scattering of an individual gas molecule from a solid
wall can be described by a thermal accommodation coefcient , c,,

_T,-T,

o, =
Ti_Ts

(3.130)
where T; is the effective molecule temperature just prior to striking the solid surface, T is
the temperature of the molecule immediately after it is scattered or reflected by the surface,
and T is the surface temperature. When the temperature of the scattered molecule is identi-
cal to the wall temperature, o, = 1. Alternatively, if T,, = T}, the molecule’s kinetic energy
and temperature are unaffected by a collision with the wall and o, = 0.

18 | >

, —T2
\oo ’ o/
? FIGURE 3.25 Molecule trajectories in

| (a) a relatively thick gas layer and (b) a
x=1, x=1L, relatively thin gas layer. Molecules collide
(@) (b) with each other, and with the two solid walls.
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For one-dimensional conduction within an ideal gas contained between two surfaces
held at temperatures 7,, and 7T,, <7,,, the heat rate through the gas layer may be
expressed as [21]

Ts,l - Ts,2

131
R G130

q =]
(Ripn—m

where, at the molecular level, the thermal resistances are associated with molecule—mole-
cule and molecule-surface collisions

Amp |2 =, || 9y =5
. L . mfp o, Y
Rt,m*m = a and Rt,m*s = E [ a, :||: y 1 :| (31323,b)

In the preceding expression, y = c¢,/c, is the specific heat ratio of the ideal gas. The two
solids are assumed to be the same material with equal values of «,, and the temperature dif-
ference is assumed to be small relative to the cold wall, (7, — T,,)/T,, < 1. Equations
3.132a,b may be combined to yield

Rt,m—s _ Amfp 2 — a, 9'}/ - 5

Rt,mﬂn L & 7 + 1

from which it is evident that R, ,,_, may be neglected if L/A g, is large and «, # 0. In this case,
Equation 3.131 reduces to Equation 3.6. However, R,,,_, can be significantif L/A, is small.
From Equation 2.11 the mean free path increases as the gas pressure is decreased. Hence,
R, increases with decreasing gas pressure, and the heat rate can be pressure dependent
when L/A, is small. Values of «, for specific gas and surface combinations range from 0.87
to 0.97 for air-aluminum and air—steel, but can be less than 0.02 when helium interacts with

clean metallic surfaces [21]. Equations 3.131, 3.132a,b may be applied to situations for which
L/A i, = 0.1. For air at atmospheric pressure, this corresponds to L= 10 nm.

3.9.2 Conduction Through Thin Solid Films

One-dimensional conduction across or along thin solid films was discussed in Section 2.2.1
in terms of the thermal conductivities k, and k,. The heat transfer rate across a thin solid
film may be approximated by combining Equation 2.9a with Equation 3.5, yielding

k(1 = Ay, /(BL)IA
L

When L/A,, is large, Equation (3.133) reduces to Equation 3.4. Many alternative expres-
sions for k, are available and are discussed in the literature [21].

kA
go= (T, = T, = (T, = T.2) (3.133)

3.10 Summary

Despite its inherent mathematical simplicity, one-dimensional, steady-state heat transfer
occurs in numerous engineering applications. Although one-dimensional, steady-state condi-
tions may not apply exactly, the assumptions may often be made to obtain results of reason-
able accuracy. You should therefore be thoroughly familiar with the means by which such
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problems are treated. In particular, you should be comfortable with the use of equivalent
thermal circuits and with the expressions for the conduction resistances that pertain to each
of the three common geometries. You should also be familiar with how the heat equation
and Fourier’s law may be used to obtain temperature distributions and the corresponding
fluxes. The implications of an internally distributed source of energy should also be clearly
understood. In addition, you should appreciate the important role that extended surfaces can
play in the design of thermal systems and should have the facility to effect design and per-
formance calculations for such surfaces. Finally, you should understand how the preceding
concepts can be applied to analyze heat transfer in the human body, thermoelectric power
generation, and micro- and nanoscale conduction.

You may test your understanding of this chapter’s key concepts by addressing the fol-
lowing questions.

* Under what conditions may it be said that the heat ux is a constant, independent of the
direction of heat flow? For each of these conditions, use physical considerations to con-
vince yourself that the heat flux would not be independent of direction if the condition
were not satisfied.

* For one-dimensional, steady-state conduction in a cylindrical or spherical shell without
heat generation, is the radial heat flux independent of radius? Is the radial heat rate inde-
pendent of radius?

* For one-dimensional, steady-state conduction without heat generation, what is the shape
of the temperature distribution in a plane wall? In a cylindrical shell? In a spherical shell?

* What is the thermal resistance? How is it defined? What are its units?

* For conduction across a plane wall, can you write the expression for the thermal resis-
tance from memory? Similarly, can you write expressions for the thermal resistance
associated with conduction across cylindrical and spherical shells? From memory, can
you express the thermal resistances associated with convection from a surface and net
radiation exchange between the surface and large surroundings?

* What is the physical basis for existence of a critical insulation radius? How do the ther-
mal conductivity and the convection coefficient affect its value?

» How is the conduction resistance of a solid affected by its thermal conductivity? How is
the convection resistance at a surface affected by the convection coefficient? How is the
radiation resistance affected by the surface emissivity?

e If heat is transferred from a surface by convection and radiation, how are the corre-
sponding thermal resistances represented in a circuit?

e Consider steady-state conduction through a plane wall separating fluids of different
temperatures, T, ; and T ,, adjoining the inner and outer surfaces, respectively. If the
convection coefficient at the outer surface is five times larger than that at the inner sur-
face, h, = 5h;, what can you say about relative proximity of the corresponding surface
temperatures, 7 , and T, to their adjoining fluid temperatures?

e Can a thermal conduction resistance be applied to a solid cylinder or sphere?

* What is a contact resistance? How is it defined? What are its units for an interface of
prescribed area? What are they for a unit area?

* How is the contact resistance affected by the roughness of adjoining surfaces?

* If the air in the contact region between two surfaces is replaced by helium, how is the
thermal contact resistance affected? How is it affected if the region is evacuated?

e What is the overall heat transfer coefcient ? How is it defined, and how is it related to
the total thermal resistance? What are its units?

* In a solid circular cylinder experiencing uniform volumetric heating and convection
heat transfer from its surface, how does the heat flux vary with radius? How does the
heat rate vary with radius?
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In a solid circular sphere experiencing uniform volumetric heating and convection heat
transfer from its surface, how does the heat flux vary with radius? How does the
heat rate vary with radius?

Is it possible to achieve steady-state conditions in a solid cylinder or sphere that is expe-
riencing heat generation and whose surface is perfectly insulated? Explain.

Can a material experiencing heat generation be represented by a thermal resistance and
included in a circuit analysis? If so, why? If not, why not?

What is the physical mechanism associated with cooking in a microwave oven? How do
conditions differ from a conventional (convection or radiant) oven?

If radiation is incident on the surface of a semitransparent medium and is absorbed as it
propagates through the medium, will the corresponding volumetric rate of heat genera-
tion g be distributed uniformly in the medium? If not, how will g vary with distance
from the surface?

In what way is a plane wall that is of thickness 2L and experiences uniform volumetric
heating and equivalent convection conditions at both surfaces similar to a plane wall
that is of thickness L and experiences the same volumetric heating and convection con-
ditions at one surface but whose opposite surface is well insulated?

What purpose is served by attaching ns to a surface?

In the derivation of the general form of the energy equation for an extended surface,
why is the assumption of one-dimensional conduction an approximation? Under what
conditions is it a good approximation?

Consider a straight fin of uniform cross section (Figure 3.15a). For an x-location in the
fin, sketch the temperature distribution in the transverse (y-) direction, placing the ori-
gin of the coordinate at the midplane of the fin (—#2 = y = #/2). What is the form of a
surface energy balance applied at the location (x, #/2)?

What is the n effectiveness ? What is its range of possible values? Under what condi-
tions are fins most effective?

What is the n efciency 7 What is its range of possible values? Under what conditions
will the efficiency be large?

What is the n resistance ? What are its units?

How are the effectiveness, efficiency, and thermal resistance of a fin affected if its ther-
mal conductivity is increased? If the convection coefficient is increased? If the length of
the fin is increased? If the thickness (or diameter) of the fin is increased?

Heat is transferred from hot water flowing through a tube to air flowing over the tube.
To enhance the rate of heat transfer, should fins be installed on the tube interior or exte-
rior surface?

A fin may be manufactured as an integral part of a surface by using a casting or extru-
sion process, or it may be separately brazed or adhered to the surface. From thermal
considerations, which option is preferred?

Describe the physical origins of the two heat source terms in the bioheat equation.
Under what conditions is the perfusion term a heat sink?

How do heat sinks increase the electric power generated by a thermoelectric device?
Under what conditions do thermal resistances associated with molecule—wall interac-
tions become important?
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Problems
Plane and Composite Walls crete wall? Floor dimensions of the basement are
20m X 30m, and the expected rental rate is $50/m?%/
3.1 Consider the plane wall of Figure 3.1, separating hot and month. What is the yearly cost, in terms of lost rental
cold fluids at temperatures T, and T ,, respectively. income, if the stone mix concrete wall with polystyrene
Using surface energy balances as boundary conditions at insulation is specified?
x = Oand x = L (see Equation 2.34), obtain the tempera- 3 3 The rear window of an automobile is defogged by pass-

3.2

ture distribution within the wall and the heat flux in
terms of T, 1, T.. 5, hy, By, k, and L.

A new building to be located in a cold climate is being
designed with a basement that has an L = 200-mm-thick
wall. Inner and outer basement wall temperatures are
T, = 20°C and T, = 0°C, respectively. The architect can
specify the wall material to be either aerated concrete
block with k,. = 0.15 W/m*K, or stone mix concrete. To
reduce the conduction heat flux through the stone mix
wall to a level equivalent to that of the aerated concrete
wall, what thickness of extruded polystyrene sheet must
be applied onto the inner surface of the stone mix con-

ing warm air over its inner surface.

(a) If the warm air is at 7,,; = 40°C and the correspond-
ing convection coefficient is &; = 30 W/m?- K, what
are the inner and outer surface temperatures of
4-mm-thick window glass, if the outside ambient air
temperature is 7., , = —10°C and the associated con-
vection coefficient is /1, = 65 W/m*+K?

(b) |In practice T, and h, vary according to weather
conditions and car speed. For values of /1, = 2, 65,
and 100 W/m?-K, compute and plot the inner and
outer surface temperatures as a function of 7., , for
-30=T,,=0°C.
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3.4 The rear window of an automobile is defogged by attach-

ing a thin, transparent, film-type heating element to its
inner surface. By electrically heating this element, a uni-
form heat flux may be established at the inner surface.

(a) For 4-mm-thick window glass, determine the electrical
power required per unit window area to maintain an
inner surface temperature of 15°C when the interior air
temperature and convection coefficient are 7., ; = 25°C
and h; = 10 W/m?- K, while the exterior (ambient) air
temperature and convection coefficient are 7., =
—10°C and h, = 65 W/m*-K.

(b) |In practice T, and h, vary according to weather
conditions and car speed. For values of &, = 2, 20,
65, and 100 W/m?-K, determine and plot the
electrical power requirement as a function of T, , for
—30 = T.,, = 0°C. From your results, what can you
conclude about the need for heater operation at low
values of /,? How is this conclusion affected by the
value of T ,? If h & V", where V is the vehicle speed
and n is a positive exponent, how does the vehicle
speed affect the need for heater operation?

3.5 A dormitory at a large university, built 50 years ago, has

exterior walls constructed of L; = 25-mm-thick sheath-
ing with a thermal conductivity of k£, = 0.1 W/m-K. To
reduce heat losses in the winter, the university decides
to encapsulate the entire dormitory by applying an
L; = 25-mm-thick layer of extruded insulation charac-
terized by k; = 0.029 W/m-K to the exterior of the
original sheathing. The extruded insulation is, in turn,
covered with an L, = 5-mm-thick architectural glass
with k, = 1.4 W/m-K. Determine the heat flux through
the original and retrofitted walls when the interior and
exterior air temperatures are 7.,; =22°C and T,, =
—20°C, respectively. The inner and outer convection heat
transfer coefficients are #,=5W/m* K and h, =
25 W/m?K, respectively.

3.6 In a manufacturing process, a transparent film is being

bonded to a substrate as shown in the sketch. To cure the
bond at a temperature 7, a radiant source is used to pro-
vide a heat flux gj (W/m?), all of which is absorbed
at the bonded surface. The back of the substrate is main-
tained at 7', while the free surface of the film is exposed to
air at T, and a convection heat transfer coefficient /.

Al ——
ir "
T h — > 90
—_—
i1 _ L;=0.25mm
L Film ky=0.025 WimK
"f L;=1.0mm
Bond, 7y  k, = 0.05 W/m-K
L, Substrate ’

]
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(a) Show the thermal circuit representing the steady-state
heat transfer situation. Be sure to label all elements,
nodes, and heat rates. Leave in symbolic form.

(b) Assume the following conditions: 7., = 20°C, h =
50 W/m?-K, and T, = 30°C. Calculate the heat flux
g that is required to maintain the bonded surface at
T, = 60°C.
Compute and plot the required heat flux as a function
of the film thickness for 0 = L; = 1 mm.

(d)|If the film is not transparent and all of the radiant
heat flux is absorbed at its upper surface, determine
the heat flux required to achieve bonding. Plot your
results as a function of L; for 0 = L; = 1 mm.

3.7 The walls of a refrigerator are typically constructed by

3.

3.

——

8

9

sandwiching a layer of insulation between sheet metal
panels. Consider a wall made from fiberglass insulation
of thermal conductivity k; = 0.046 W/m-K and thick-
ness L; = 50 mm and steel panels, each of thermal con-
ductivity k, = 60 W/m-K and thickness L, = 3 mm. If
the wall separates refrigerated air at 7, ; = 4°C from
ambient air at T, = 25°C, what is the heat gain per
unit surface area? Coefficients associated with natural
convection at the inner and outer surfaces may be
approximated as i; = h, = 5 W/m?-K.

A t = 10-mm-thick horizontal layer of water has a top
surface temperature of 7, = —4°C and a bottom surface
temperature of 7, = 2°C. Determine the location of the
solid-liquid interface at steady state.

A technique for measuring convection heat transfer
coefficients involves bonding one surface of a thin
metallic foil to an insulating material and exposing the
other surface to the fluid flow conditions of interest.

h —
—_—

——Foil (P, T,)

«— Foam Insulation (k)

Ty

By passing an electric current through the foil, heat is
dissipated uniformly within the foil and the correspond-
ing flux, P[., may be inferred from related voltage and
current measurements. If the insulation thickness L and
thermal conductivity k& are known and the fluid, foil,
and insulation temperatures (7., T, 7)) are measured,
the convection coefficient may be determined. Consider
conditions for which T, = T, =25°C, P, = 2000
W/m?, L = 10 mm, and k = 0.040 W/m-K.
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(a) With water flow over the surface, the foil tempera-
ture measurement yields 7, = 27°C. Determine the
convection coefficient. What error would be
incurred by assuming all of the dissipated power to
be transferred to the water by convection?

(b) If, instead, air flows over the surface and the tempera-
ture measurement yields 7, = 125°C, what is the con-
vection coefficient? The foil has an emissivity of 0.15
and is exposed to large surroundings at 25°C. What
error would be incurred by assuming all of the dissi-

pated power to be transferred to the air by convection?

Typically, heat flux gages are operated at a fixed
temperature (7), in which case the power dissipa-
tion provides a direct measure of the convection
coefficient. For T, = 27°C, plot P... as a function
of h, for 10 <h, = 1000 W/m?-K. What effect
does h, have on the error associated with neglecting
conduction through the insulation?

3.10 The wind chill, which is experienced on a cold, windy

day, is related to increased heat transfer from exposed
human skin to the surrounding atmosphere. Consider a
layer of fatty tissue that is 3 mm thick and whose inte-
rior surface is maintained at a temperature of 36°C. On
a calm day the convection heat transfer coefficient at
the outer surface is 25 W/m*-K, but with 30 km/h
winds it reaches 65 W/m?*- K. In both cases the ambient
air temperature is —15°C.

(a) What is the ratio of the heat loss per unit area from
the skin for the calm day to that for the windy day?

(b) What will be the skin outer surface temperature for
the calm day? For the windy day?

(c) What temperature would the air have to assume on

the calm day to produce the same heat loss occurring
with the air temperature at —15°C on the windy day?

3.11 Determine the thermal conductivity of the carbon nan-

otube of Example 3.4 when the heating island tempera-
ture is measured to be 7, = 332.6 K, without evaluating
the thermal resistances of the supports. The conditions
are the same as in the example.

3.12 A thermopane window consists of two pieces of glass

7 mm thick that enclose an air space 7 mm thick. The
window separates room air at 20°C from outside ambi-
ent air at —10°C. The convection coefficient associated
with the inner (room-side) surface is 10 W/m?- K.

(a) If the convection coefficient associated with the
outer (ambient) air is &, = 80 W/m?>-K, what is
the heat loss through a window that is 0.8 m long
by 0.5 m wide? Neglect radiation, and assume the
air enclosed between the panes to be stagnant.

Compute and plot the effect of 4, on the heat loss for
10 =< i, = 100 W/m?- K. Repeat this calculation for a

3.13
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triple-pane construction in which a third pane and a
second air space of equivalent thickness are added.

A house has a composite wall of wood, fiberglass insula-
tion, and plaster board, as indicated in the sketch. On a
cold winter day, the convection heat transfer coefficients
are h, = 60 W/m>-K and h;, = 30 W/m?-K. The total
wall surface area is 350 m>.

Glass fiber blanket

(28 kg/m®), k,
Plaster board, kpj liPlywood siding, k;
Inside Outside
hy, Tos, ;= 20°C Bty Ty = -15°C
10 mm—> |«—100 mm——> |«—20 mm

3.14

3.15

L, L, Ly

(a) Determine a symbolic expression for the total thermal
resistance of the wall, including inside and outside
convection effects for the prescribed conditions.

(b) Determine the total heat loss through the wall.

(c) If the wind were blowing violently, raising A, to
300 W/m? - K, determine the percentage increase in
the heat loss.

(d) What is the controlling resistance that determines the
amount of heat flow through the wall?

Consider the composite wall of Problem 3.13 under con-
ditions for which the inside air is still characterized by
T, ;= 20°C and h; = 30 W/m?- K. However, use the
more realistic conditions for which the outside air is
characterized by a diurnal (time) varying temperature of
the form

Ty (K) =273 + 5sin (iz t) 0<tr=<12h
_ .27
T, ,(K)=273+ 11sin (24[> 12=t=24h

with h, = 60 W/m?>-K. Assuming quasi-steady condi-
tions for which changes in energy storage within the wall
may be neglected, estimate the daily heat loss through
the wall if its total surface area is 200 m.

Consider a composite wall that includes an 8-mm-thick
hardwood siding, 40-mm by 130-mm hardwood studs
on 0.65-m centers with glass fiber insulation (paper
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faced, 28 kg/m®), and a 12-mm layer of gypsum (vermi-
culite) wall board.

Wood siding

Stud

== Insulation

3.16

3.17

3.18

Wall board

l—

What is the thermal resistance associated with a wall
that is 2.5 m high by 6.5 m wide (having 10 studs, each
2.5 m high)? Assume surfaces normal to the x-direction
are isothermal.

40 mm —»‘

Work Problem 3.15 assuming surfaces parallel to the
x-direction are adiabatic.

Consider the oven of Problem 1.54. The walls of the
oven consist of L = 30-mm-thick layers of insulation
characterized by k;,, = 0.03 W/m-K that are sand-
wiched between two thin layers of sheet metal. The
exterior surface of the oven is exposed to air at 23°C
with /g, = 2 W/m?-K. The interior oven air tempera-
ture is 180°C. Neglecting radiation heat transfer, deter-
mine the steady-state heat flux through the oven walls
when the convection mode is disabled and the free con-
vection coefficient at the inner oven surface is
hy = 3W/m?-K. Determine the heat flux through the
oven walls when the convection mode is activated, in
which case the forced convection coefficient at the
inner oven surface is 4, = 27 W/m?-K. Does operation
of the oven in its convection mode result in signifi-
cantly increased heat losses from the oven to the
kitchen? Would your conclusion change if radiation
were included in your analysis?

The composite wall of an oven consists of three materi-
als, two of which are of known thermal conductivity,
ky =20 W/m+K and k- =50 W/m-K, and known
thickness, Ly, = 0.30 m and L. = 0.15m. The third
material, B, which is sandwiched between materials
A and C, is of known thickness, Lz = 0.15 m, but
unknown thermal conductivity kg.

Ts i Tva
- ka kg | ke -
Air
T.

SL N PR A

Under steady-state operating conditions, measurements
reveal an outer surface temperature of T,, = 20°C, an
inner surface temperature of 7,; = 600°C, and an oven
air temperature of 7, = 800°C. The inside convection
coefficient 4 is known to be 25 W/m*-K. What is the
value of kg?

3.19

3.20

3.21

3.22

The wall of a drying oven is constructed by sandwich-
ing an insulation material of thermal conductivity k =
0.05 W/m* K between thin metal sheets. The oven air is at
T..; = 300°C, and the corresponding convection coeffi-
cient is 4; = 30 W/m?+ K. The inner wall surface absorbs
a radiant flux of g7, = 100 W/m?> from hotter objects
within the oven. The room air is at 7. , = 25°C, and the
overall coefficient for convection and radiation from
the outer surface is 1, = 10 W/m?* K.

Absorbed Insulation, &
radiation, g,y
bW T,
Oven air Room air
Towr s i Too o0 I,

00,i1 0,00 My

T T

2 L .
(a) Draw the thermal circuit for the wall and label all
temperatures, heat rates, and thermal resistances.

(b) What insulation thickness L is required to maintain
the outer wall surface at a safe-fo-touch tempera-
ture of T, = 40°C?

The t = 4-mm-thick glass windows of an automobile
have a surface area of A = 2.6 m*. The outside temper-
ature is T, ,, = 32°C while the passenger compartment
is maintained at 7,, = 22°C. The convection heat
transfer coefficient on the exterior window surface is
h, = 90 W/m?- K. Determine the heat gain through the
windows when the interior convection heat transfer
coefficient is i; = 15 W/m?- K. By controlling the air-
flow in the passenger compartment the interior heat
transfer coefficient can be reduced to #; = 5 W/m?*+K
without sacrificing passenger comfort. Determine the
heat gain through the window for the reduced inside heat
transfer coefficient.

The thermal characteristics of a small, dormitory refrig-
erator are determined by performing two separate
experiments, each with the door closed and the refriger-
ator placed in ambient air at 7, = 25°C. In one case, an
electric heater is suspended in the refrigerator cavity,
while the refrigerator is unplugged. With the heater dis-
sipating 20 W, a steady-state temperature of 90°C is
recorded within the cavity. With the heater removed
and the refrigerator now in operation, the second exper-
iment involves maintaining a steady-state cavity tem-
perature of 5°C for a fixed time interval and recording
the electrical energy required to operate the refrigera-
tor. In such an experiment for which steady operation is
maintained over a 12-hour period, the input electrical
energy is 125,000 J. Determine the refrigerator’s coeffi-
cient of performance (COP).

In the design of buildings, energy conservation require-
ments dictate that the exterior surface area, A,, be mini-
mized. This requirement implies that, for a desired floor
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space, there may be optimum values associated with
the number of floors and horizontal dimensions of the
building. Consider a design for which the total floor
space, Ay, and the vertical distance between floors, Hy,
are prescribed.

(a) If the building has a square cross section of width W
on a side, obtain an expression for the value of W
that would minimize heat loss to the surroundings.
Heat loss may be assumed to occur from the four
vertical side walls and from a flat roof. Express your
result in terms of A, and H,.

(b) If A, = 32,768 m? and H; = 4m, for what values of
W and N; (the number of floors) is the heat loss
minimized? If the average overall heat transfer
coefficient is U =1W/m*- K and the difference
between the inside and ambient air temperatures is
25°C, what is the corresponding heat loss? What
is the percentage reduction in heat loss compared
with a building for N, = 27

When raised to very high temperatures, many conven-
tional liquid fuels dissociate into hydrogen and other
components. Thus the advantage of a solid oxide fuel
cell is that such a device can internally reform readily
available liquid fuels into hydrogen that can then be
used to produce electrical power in a manner similar to
Example 1.5. Consider a portable solid oxide fuel cell,
operating at a temperature of 7, = 800°C. The fuel cell
is housed within a cylindrical canister of diameter D =
75 mm and length L = 120 mm. The outer surface of
the canister is insulated with a low-thermal-conductivity
material. For a particular application, it is desired that
the thermal signature of the canister be small, to avoid
its detection by infrared sensors. The degree to which
the canister can be detected with an infrared sensor may
be estimated by equating the radiation heat flux emitted
from the exterior surface of the canister (Equation 1.5;
E, = £,0T?) to the heat flux emitted from an equivalent
black surface, (E, = oT}). If the equivalent black sur-
face temperature 7, is near the surroundings tempera-
ture, the thermal signature of the canister is too small to
be detected—the canister is indistinguishable from the
surroundings.

(a) Determine the required thickness of insulation to be
applied to the cylindrical wall of the canister to
ensure that the canister does not become highly visi-
ble to an infrared sensor (i.e., T), — Ty, < 5 K).
Consider cases where (i) the outer surface is cov-
ered with a very thin layer of dirt (¢, = 0.90) and
(ii) the outer surface is comprised of a very thin
polished aluminum sheet (g, = 0.08). Calculate the
required thicknesses for two types of insulating
material, calcium silicate (k = 0.09 W/m-K) and

Fire-side 1 mm 1 mm
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aerogel (k = 0.006 W/m-K). The temperatures of
the surroundings and the ambient are 7,,, = 300 K
and T,, = 298 K, respectively. The outer surface is
characterized by a convective heat transfer coeffi-
cient of & = 12 W/m*- K.

(b) Calculate the outer surface temperature of the can-
ister for the four cases (high and low thermal con-
ductivity; high and low surface emissivity).

(c) Calculate the heat loss from the cylindrical walls of
the canister for the four cases.

3.24 A firefighter’s protective clothing, referred to as a turnout

coat, is typically constructed as an ensemble of three lay-
ers separated by air gaps, as shown schematically.

Thermal
liner (t1)

Moisture

Shell (s) >
( Tbamer (mb)

Firefighter
LAir gap tAirgap

Representative dimensions and thermal conductivities
for the layers are as follows.

Layer Thickness (mm) k (W/m - K)
Shell (s) 0.8 0.047
Moisture barrier (mb) 0.55 0.012
Thermal liner (tl) 3.5 0.038

The air gaps between the layers are 1 mm thick,
and heat is transferred by conduction and radiation
exchange through the stagnant air. The linearized
radiation coefficient for a gap may be approximated
as, hyy=o(T, +T) T+ T3~ 40'T.3vg, where T,
represents the average temperature of the surfaces
comprising the gap, and the radiation flux across the

gap may be expressed as qrg = Nyq (T, — T>).

(a) Represent the turnout coat by a thermal circuit,
labeling all the thermal resistances. Calculate and
tabulate the thermal resistances per unit area (m?* -
K/W) for each of the layers, as well as for the con-
duction and radiation processes in the gaps. Assume

that a value of T, = 470 K may be used to approx-

imate the radiation resistance of both gaps. Com-
ment on the relative magnitudes of the resistances.

(b) For a pre-ash-over fire environment in which fire-
fighters often work, the typical radiant heat flux
on the fire-side of the turnout coat is 0.25 W/cm?.
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What is the outer surface temperature of the turnout
coat if the inner surface temperature is 66°C, a con-
dition that would result in burn injury?

3.25 A particular thermal system involves three objects of

fixed shape with conduction resistances of R, = 1 K/W,
R, = 2K/W and R; = 4 K/W, respectively. An objec-
tive is to minimize the total thermal resistance R, asso-
ciated with a combination of R|, R,, and R;. The chief
engineer is willing to invest limited funds to specify an
alternative material for just one of the three objects;
the alternative material will have a thermal conductiv-
ity that is twice its nominal value. Which object (1, 2,
or 3) should be fabricated of the higher thermal con-
ductivity material to most significantly decrease R,,?
Hint: Consider two cases, one for which the three ther-
mal resistances are arranged in series, and the second
for which the three resistances are arranged in parallel.

Contact Resistance

3.26 A composite wall separates combustion gases at

2600°C from a liquid coolant at 100°C, with gas- and
liquid-side convection coefficients of 50 and 1000
W/m?+ K. The wall is composed of a 10-mm-thick layer
of beryllium oxide on the gas side and a 20-mm-thick
slab of stainless steel (AISI 304) on the liquid side. The
contact resistance between the oxide and the steel is
0.05 m?-K/W. What is the heat loss per unit surface
area of the composite? Sketch the temperature distribu-
tion from the gas to the liquid.

Approximately 10° discrete electrical components can
be placed on a single integrated circuit (chip), with
electrical heat dissipation as high as 30,000 W/m?. The
chip, which is very thin, is exposed to a dielectric lig-
uid at its outer surface, with &, = 1000 W/m*-K and
T., = 20°C, and is joined to a circuit board at its inner
surface. The thermal contact resistance between the
chip and the board is 107* m?+K/W, and the board
thickness and thermal conductivity are L, = 5 mm and
k, = 1 W/m-K, respectively. The other surface of the
board is exposed to ambient air for which h; = 40
W/m?-K and T.,; = 20°C.

(a) Sketch the equivalent thermal circuit corresponding
to steady-state conditions. In variable form, label
appropriate resistances, temperatures, and heat fluxes.

(b) Under steady-state conditions for which the chip
heat dissipation is ¢! = 30,000 W/m? what is the
chip temperature?

n

(c)| The maximum allowable heat flux, g, is deter-
mined by the constraint that the chip temperature
must not exceed 85°C. Determine g, for the fore-
going conditions. If air is used in lieu of the dielec-
tric liquid, the convection coefficient is reduced by
approximately an order of magnitude. What is the
value of ¢/, for h, = 100 W/m?-K? With air cool-
ing, can significant improvements be realized by
using an aluminum oxide circuit board and/or
by using a conductive paste at the chip/board inter-
face for which R}, = 107> m?-K/W?

3.28 Two stainless steel plates 10 mm thick are subjected to a

contact pressure of 1 bar under vacuum conditions for
which there is an overall temperature drop of 100°C
across the plates. What is the heat flux through the plates?
What is the temperature drop across the contact plane?

Consider a plane composite wall that is composed of
two materials of thermal conductivities k, = 0.1 W/m-K
and kg = 0.04 W/m-K and thicknesses L, = 10 mm and
Ly =20 mm. The contact resistance at the interface
between the two materials is known to be 0.30 m?+ K/W.
Material A adjoins a fluid at 200°C for which 4 = 10
W/m?-K, and material B adjoins a fluid at 40°C for
which 4 = 20 W/m?*- K.

(a) What is the rate of heat transfer through a wall that
is 2 m high by 2.5 m wide?

(b) Sketch the temperature distribution.

The performance of gas turbine engines may be

improved by increasing the tolerance of the turbine
blades to hot gases emerging from the combustor. One
approach to achieving high operating temperatures
involves application of a thermal barrier coating
(TBC) to the exterior surface of a blade, while passing
cooling air through the blade. Typically, the blade is
made from a high-temperature superalloy, such as
Inconel (k=25 W/m-K), while a ceramic, such as
zirconia (k = 1.3 W/m-K), is used as a TBC.

Cool S Il
Tuo a}r;t uperalloy
wmy e o / .........................
—> liChlp qi T, / Cooling air
T g Tonh;
L L Thermal contact resistance, R/, —
i Board, &, _ Hot gases
Too g
Air I

oo,i1 '
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m Problems

Consider conditions for which hot gases at T, , =
1700 K and cooling air at T.,; = 400 K provide outer
and inner surface convection coefficients of h, =
1000 W/m?-K and h; = 500 W/m? - K, respectively. If a
0.5-mm-thick zirconia TBC is attached to a 5-mm-
thick Inconel blade wall by means of a metallic bond-
ing agent, which provides an interfacial thermal resis-
tance of R/, = 10™* m?- K/W, can the Inconel be main-
tained at a temperature that is below its maximum
allowable value of 1250 K? Radiation effects may be
neglected, and the turbine blade may be approximated
as a plane wall. Plot the temperature distribution with
and without the TBC. Are there any limits to the thick-
ness of the TBC?

A commercial grade cubical freezer, 3 m on a side,
has a composite wall consisting of an exterior sheet
of 6.35-mm-thick plain carbon steel, an intermediate
layer of 100-mm-thick cork insulation, and an inner
sheet of 6.35-mm-thick aluminum alloy (2024).
Adhesive interfaces between the insulation and the
metallic strips are each characterized by a thermal con-
tact resistance of R, =2.5X 107* m*- K/W. What is
the steady-state cooling load that must be maintained
by the refrigerator under conditions for which the outer
and inner surface temperatures are 22°C and —6°C,
respectively?

Physicists have determined the theoretical value of the
thermal conductivity of a carbon nanotube to be k., r =
5000 W/m-K.

(a) Assuming the actual thermal conductivity of the
carbon nanotube is the same as its theoretical value,
find the thermal contact resistance, R, , that exists
between the carbon nanotube and the top surfaces
of the heated and sensing islands in Example 3.4 .

(b) |Using the value of the thermal contact resistance
calculated in part (a), plot the fraction of the total
resistance between the heated and sensing islands
that is due to the thermal contact resistances for
island separation distances of 5 um = s = 20 um.

Consider a power transistor encapsulated in an alu-
minum case that is attached at its base to a square
aluminum plate of thermal conductivity k£ = 240 W/m-K,
thickness L = 6 mm, and width W = 20 mm. The case
is joined to the plate by screws that maintain a contact
pressure of 1 bar, and the back surface of the plate
transfers heat by natural convection and radiation to
ambient air and large surroundings at T, = Ty, =
25°C. The surface has an emissivity of & = 0.9, and the
convection coefficient is & = 4 W/m?-K. The case is
completely enclosed such that heat transfer may be
assumed to occur exclusively through the base plate.
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. 'y Tsur

Transistor

case

T o Pejec | — Base plate, (k,€)
| — Interface, A,
w

Enclosure

L

(a) If the air-filled aluminum-to-aluminum interface
is characterized by an area of A, = 2 X 10™* m? and
a roughness of 10 wm, what is the maximum allow-
able power dissipation if the surface temperature of
the case, T}, is not to exceed 85°C?

(b) [The convection coefficient may be increased by
subjecting the plate surface to a forced flow of air.

Explore the effect of increasing the coefficient over
the range 4 =< h = 200 W/m? - K.

Porous Media

3.34 Ring-porous woods, such as oak, are characterized by

3.35

grains. The dark grains consist of very low-density
material that forms early in the springtime. The sur-
rounding lighter-colored wood is composed of high-
density material that forms slowly throughout most of
the growing season.

Wood grain (low-density)

&x

High-density material

Assuming the low-density material is highly porous and
the oak is dry, determine the fraction of the oak cross-
section that appears as being grained. Hint: Assume the
thermal conductivity parallel to the grains is the same
as the radial conductivity of Table A.3.

A batt of glass fiber insulation is of density p =
28 kg/m’. Determine the maximum and minimum pos-
sible values of the effective thermal conductivity of the
insulation at 7= 300 K, and compare with the value
reported in Table A.3.



200

3.36

3.37

Chapter 3 ®m One-Dimensional, Steady-State Conduction

Air usually constitutes up to half of the volume of
commercial ice creams and takes the form of small
spherical bubbles interspersed within a matrix of frozen
matter. The thermal conductivity of ice cream that con-
tains no air is k,, = 1.1 W/m+K at 7 = -20°C. Deter-
mine the thermal conductivity of commercial ice cream
characterized by & = 0.20, also at T = -20°C.

Determine the density, specific heat, and thermal con-
ductivity of a lightweight aggregate concrete that is
composed of 65% stone mix concrete and 35% air by
volume. Evaluate properties at 7 = 300 K.

A one-dimensional plane wall of thickness L is con-
structed of a solid material with a linear, nonuniform
porosity distribution described by &(x) = &, (x/L).
Plot the steady-state temperature distribution, 7(x), for
k,=10Wm-K, k=0.1Wm-K, L=1m, &,,=
0.25, T(x = 0) = 30°C and ¢" = 100 W/m®> using the
expression for the minimum effective thermal conduc-
tivity of a porous medium, the expression for the maxi-
mum effective thermal conductivity of a porous
medium, Maxwell’s expression, and for the case where
ke(x) = k.

Alternative Conduction Analysis

3.39

3.40

The diagram shows a conical section fabricated
from pure aluminum. It is of circular cross section
having diameter D = ax'"?, where a = 0.5 m"2. The
small end is located at x; = 25 mm and the large end
at x, = 125 mm. The end temperatures are 7, =
600 K and T, =400 K, while the lateral surface is
well insulated.

(a) Derive an expression for the temperature distribution
T(x) in symbolic form, assuming one-dimensional
conditions. Sketch the temperature distribution.

(b) Calculate the heat rate g,.
A truncated solid cone is of circular cross section, and

its diameter is related to the axial coordinate by an
expression of the form D = ax*?, where a = 1.0 m ™2,
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X2

L,

The sides are well insulated, while the top surface
of the cone at x; is maintained at 7, and the bottom sur-
face at x, is maintained at 75.

(a) Obtain an expression for the temperature distribution
T(x).

(b) What is the rate of heat transfer across the cone if it
is constructed of pure aluminum with x; = 0.075 m,
T, = 100°C, x, = 0.225 m, and T, = 20°C?

From Figure 2.5 it is evident that, over a wide tempera-
ture range, the temperature dependence of the thermal
conductivity of many solids may be approximated by a
linear expression of the form k = k, + aT, where k, is
a positive constant and a is a coefficient that may be
positive or negative. Obtain an expression for the heat
flux across a plane wall whose inner and outer surfaces
are maintained at 7, and T, respectively. Sketch the
forms of the temperature distribution corresponding to
a>0,a=0,anda <O0.

Consider a tube wall of inner and outer radii r; and r,,
whose temperatures are maintained at 7; and 7, respec-
tively. The thermal conductivity of the cylinder is tem-
perature dependent and may be represented by an
expression of the form k = k,(1 + aT), where k, and a
are constants. Obtain an expression for the heat transfer
per unit length of the tube. What is the thermal resis-
tance of the tube wall?

Measurements show that steady-state conduction
through a plane wall without heat generation produced
a convex temperature distribution such that the mid-
point temperature was AT, higher than expected for a
linear temperature distribution.




m Problems

Assuming that the thermal conductivity has a linear
dependence on temperature, k = k(1 + aT), where « is
a constant, develop a relationship to evaluate « in terms
of AT,, T), and T>.

3.44 A device used to measure the surface temperature of an
object to within a spatial resolution of approximately
50 nm is shown in the schematic. It consists of an
extremely sharp-tipped stylus and an extremely small
cantilever that is scanned across the surface. The probe
tip is of circular cross section and is fabricated of poly-
crystalline silicon dioxide. The ambient temperature is
measured at the pivoted end of the cantilever as 7., =
25°C, and the device is equipped with a sensor to mea-
sure the temperature at the upper end of the sharp tip,
T, The thermal resistance between the sensing probe
and the pivoted end is R, = 5 X 10° K/W.

(a) Determine the thermal resistance between the sur-
face temperature and the sensing temperature.

(b) If the sensing temperature is T, = 28.5°C, deter-
mine the surface temperature.

Hint: Although nanoscale heat transfer effects may be
important, assume that the conduction occurring in the air
adjacent to the probe tip can be described by Fourier’s
law and the thermal conductivity found in Table A.4.

T.

sen Cantilever T =25°C

Bl

Surface

Air

surf L=50nm

Cylindrical Wall

3.45 A steam pipe of 0.12-m outside diameter is insulated
with a layer of calcium silicate.

(a) If the insulation is 20 mm thick and its inner and
outer surfaces are maintained at 7,;, = 800 K
and T, = 490 K, respectively, what is the heat loss
per unit length (¢") of the pipe?

We wish to explore the effect of insulation thickness
on the heat loss ¢" and outer surface temperature T ,,
with the inner surface temperature fixed at 7;; =
800 K. The outer surface is exposed to an airflow
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(T, = 25°C) that maintains a convection coefficient
of h =25 W/m*-K and to large surroundings for
which T, = T,, = 25°C. The surface emissivity of
calcium silicate is approximately 0.8. Compute and
plot the temperature distribution in the insulation as
a function of the dimensionless radial coordinate,
(r — r)/(r, — 1)), where r, =0.06m and r, is a
variable (0.06 <r, = 0.20 m). Compute and plot
the heat loss as a function of the insulation thickness
forO0=(r, — r)) =0.14 m.

3.46 Consider the water heater described in Problem 1.48.
We now wish to determine the energy needed to com-
pensate for heat losses incurred while the water is
stored at the prescribed temperature of 55°C. The
cylindrical storage tank (with flat ends) has a capacity
of 100 gal, and foamed urethane is used to insulate
the side and end walls from ambient air at an annual
average temperature of 20°C. The resistance to heat
transfer is dominated by conduction in the insulation
and by free convection in the air, for which & = 2
W/m?- K. If electric resistance heating is used to com-
pensate for the losses and the cost of electric power is
$0.18/kWh, specify tank and insulation dimensions for
which the annual cost associated with the heat losses is
less than $50.

3.47 To maximize production and minimize pumping costs,
crude oil is heated to reduce its viscosity during trans-
portation from a production field.

(a) Consider a pipe-in-pipe configuration consisting of
concentric steel tubes with an intervening insulating
material. The inner tube is used to transport warm
crude oil through cold ocean water. The inner steel
pipe (k, =35W/m+K) has an inside diameter of
D;; = 150 mm and wall thickness #; = 10 mm while
the outer steel pipe has an inside diameter of
D;, = 250 mm and wall thickness #, = ;. Determine
the maximum allowable crude oil temperature to
ensure the polyurethane foam insulation (k, =
0.075 W/m-K) between the two pipes does not
exceed its maximum service temperature of 7., =
70°C. The ocean water is at 7., , = —=5°C and provides
an external convection heat transfer coefficient of
h, = 500 W/m? - K. The convection coefficient asso-
ciated with the flowing crude oil is #; = 450 W/m?* - K.

(b) It is proposed to enhance the performance of the
pipe-in-pipe device by replacing a thin (¢, = 5 mm)
section of polyurethane located at the outside of the
inner pipe with an aerogel insulation material
(k, = 0.012W/m+K). Determine the maximum
allowable crude oil temperature to ensure maximum
polyurethane temperatures are below T, ,,,, = 70°C.
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A thin electrical heater is wrapped around the outer sur-
face of a long cylindrical tube whose inner surface is
maintained at a temperature of 5°C. The tube wall has
inner and outer radii of 25 and 75 mm, respectively, and
a thermal conductivity of 10 W/m+ K. The thermal con-
tact resistance between the heater and the outer surface
of the tube (per unit length of the tube) is R;.=
0.01 m-K/W. The outer surface of the heater is exposed
to a fluid with 7, = —10°C and a convection coefficient
of h= 100 W/m?>-K. Determine the heater power
per unit length of tube required to maintain the heater at
T, = 25°C.

In Problem 3.48, the electrical power required to main-

3.50
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tain the heater at 7, = 25°C depends on the thermal
conductivity of the wall material &, the thermal contact
resistance R;, and the convection coefficient /4. Com-
pute and plot the separate effect of changes in k
(1 =k=200W/m-K), R, (0=R/ . =0.1m-K/W),
and A (10 = h = 1000 W/m?-K) on the total heater
power requirement, as well as the rate of heat transfer
to the inner surface of the tube and to the fluid.

A stainless steel (AISI 304) tube used to transport
a chilled pharmaceutical has an inner diameter
of 36 mm and a wall thickness of 2 mm. The pharma-
ceutical and ambient air are at temperatures of 6°C and
23°C, respectively, while the corresponding inner
and outer convection coefficients are 400 W/m*+K and
6 W/m? - K, respectively.

(a) What is the heat gain per unit tube length?

(b) What is the heat gain per unit length if a 10-mm-
thick layer of calcium silicate insulation (kj,, =
0.050 W/m-K) is applied to the tube?

Superheated steam at 575°C is routed from a boiler to
the turbine of an electric power plant through steel tubes
(k = 35 W/m-K) of 300-mm inner diameter and 30-mm
wall thickness. To reduce heat loss to the surroundings and
to maintain a safe-to-touch outer surface temperature, a
layer of calcium silicate insulation (k = 0.10 W/m*K) is
applied to the tubes, while degradation of the insulation
is reduced by wrapping it in a thin sheet of aluminum
having an emissivity of ¢ = 0.20. The air and wall
temperatures of the power plant are 27°C.

(a) Assuming that the inner surface temperature of
a steel tube corresponds to that of the steam and
the convection coefficient outside the aluminum
sheet is 6 W/m?- K, what is the minimum insulation
thickness needed to ensure that the temperature
of the aluminum does not exceed 50°C? What is
the corresponding heat loss per meter of tube
length?

(b) |Explore the effect of the insulation thickness on the
temperature of the aluminum and the heat loss per
unit tube length.

3.52 A thin electrical heater is inserted between a long circu-

lar rod and a concentric tube with inner and outer radii of
20 and 40 mm. The rod (A) has a thermal conductivity
of ky = 0.15 W/m-K, while the tube (B) has a thermal
conductivity of kg = 1.5 W/m*K and its outer surface
is subjected to convection with a fluid of temperature
T., = —15°C and heat transfer coefficient 50 W/m?+ K.
The thermal contact resistance between the cylinder
surfaces and the heater is negligible.

(a) Determine the electrical power per unit length of
the cylinders (W/m) that is required to maintain the
outer surface of cylinder B at 5°C.

(b) What is the temperature at the center of cylinder A?

3.53 A wire of diameter D = 2 mm and uniform temperature

T has an electrical resistance of 0.01 {)/m and a current
flow of 20 A.

(a) What is the rate at which heat is dissipated per unit
length of wire? What is the heat dissipation per
unit volume within the wire?

(b) If the wire is not insulated and is in ambient air
and large surroundings for which 7,, = T,,, = 20°C,
what is the temperature 7 of the wire? The
wire has an emissivity of 0.3, and the coefficient
associated with heat transfer by natural convection
may be approximated by an expression of the
form, h= C[(T — T,)/D]", where C =125
W/m™- K5,

(c)| If the wire is coated with plastic insulation of 2-mm
thickness and a thermal conductivity of 0.25 W/m-K,
what are the inner and outer surface temperatures of
the insulation? The insulation has an emissivity of
0.9, and the convection coefficient is given by the
expression of part (b). Explore the effect of the insu-
lation thickness on the surface temperatures.

3.54 A 2-mm-diameter electrical wire is insulated by a

2-mm-thick rubberized sheath (k = 0.13 W/m*K), and
the wire/sheath interface is characterized by a thermal
contact resistance of R, = 3 X 10~* m*- K/W. The con-
vection heat transfer coefficient at the outer surface of
the sheath is 10 W/m?-K, and the temperature of
the ambient air is 20°C. If the temperature of the insula-
tion may not exceed 50°C, what is the maximum allow-
able electrical power that may be dissipated per unit
length of the conductor? What is the critical radius of
the insulation?



m Problems

3.55 Electric current flows through a long rod generating

thermal energy at a uniform volumetric rate of g =
2 X 10°W/m®. The rod is concentric with a hollow
ceramic cylinder, creating an enclosure that is filled
with air.

T,=25°C Ceramic, k = 1.75 W/m-K
D; =40 mm
T, D, =120 mm

Enclosure, air space

Rod, g, D, = 20 mm

The thermal resistance per unit length due to radiation
between the enclosure surfaces is R,y = 0.30 m - K/W,
and the coefficient associated with free convection in
the enclosure is 7 = 20 W/m? - K.

(a) Construct a thermal circuit that can be used to cal-
culate the surface temperature of the rod, 7,. Label
all temperatures, heat rates, and thermal resis-
tances, and evaluate each thermal resistance.

(b) Calculate the surface temperature of the rod for the
prescribed conditions.

3.56 The evaporator section of a refrigeration unit consists

of thin-walled, 10-mm-diameter tubes through which
refrigerant passes at a temperature of —18°C. Air is
cooled as it flows over the tubes, maintaining a surface
convection coefficient of 100 W/m?*-K, and is subse-
quently routed to the refrigerator compartment.

(a) For the foregoing conditions and an air temperature
of —3°C, what is the rate at which heat is extracted
from the air per unit tube length?

If the refrigerator’s defrost unit malfunctions, frost
will slowly accumulate on the outer tube surface.
Assess the effect of frost formation on the cooling
capacity of a tube for frost layer thicknesses in the
range 0 =686 =4 mm. Frost may be assumed to
have a thermal conductivity of 0.4 W/m*K.

(c) The refrigerator is disconnected after the defrost
unit malfunctions and a 2-mm-thick layer of frost
has formed. If the tubes are in ambient air for
which T,, = 20°C and natural convection maintains
a convection coefficient of 2 W/m?-K, how long
will it take for the frost to melt? The frost may be
assumed to have a mass density of 700 kg/m® and a

latent heat of fusion of 334 kl/kg.

3.57 A composite cylindrical wall is composed of two

materials of thermal conductivity k, and kg, which
are separated by a very thin, electric resistance

3.58
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heater for which interfacial contact resistances are
negligible.

Resistance heater
an Ty

Internal flow
T, h

oo,i1 "

Ambient air

T.,h

*0,0! Y0

Liquid pumped through the tube is at a temperature T, ;
and provides a convection coefficient 4; at the inner sur-
face of the composite. The outer surface is exposed to
ambient air, which is at T, , and provides a convection
coefficient of h,. Under steady-state conditions, a uni-
form heat flux of ¢j, is dissipated by the heater.

(a) Sketch the equivalent thermal circuit of the system
and express all resistances in terms of relevant
variables.

(b)

Obtain an expression that may be used to determine
the heater temperature, 7).

(c) Obtain an expression for the ratio of heat flows to
the outer and inner fluids, ¢,/g;. How might the
variables of the problem be adjusted to minimize

this ratio?

An electrical current of 700 A flows through a stainless
steel cable having a diameter of 5 mm and an electrical
resistance of 6 X 107 /m (i.e., per meter of cable
length). The cable is in an environment having a tem-
perature of 30°C, and the total coefficient associated
with convection and radiation between the cable and
the environment is approximately 25 W/m?*- K.

(a) If the cable is bare, what is its surface temperature?

(b) If a very thin coating of electrical insulation is
applied to the cable, with a contact resistance of
0.02 m* - K/W, what are the insulation and cable
surface temperatures?

(c) There is some concern about the ability of the insula-
tion to withstand elevated temperatures. What thick-
ness of this insulation (k = 0.5 W/m - K) will yield
the lowest value of the maximum insulation temper-
ature? What is the value of the maximum tempera-
ture when this thickness is used?
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A 0.20-m-diameter, thin-walled steel pipe is used to

transport saturated steam at a pressure of 20 bars in a

room for which the air temperature is 25°C and the con-

vection heat transfer coefficient at the outer surface of

the pipe is 20 W/m?- K.

(a) What is the heat loss per unit length from the bare
pipe (no insulation)? Estimate the heat loss per unit
length if a 50-mm-thick layer of insulation (magne-
sia, 85%) is added. The steel and magnesia may each
be assumed to have an emissivity of 0.8, and the
steam-side convection resistance may be neglected.

(b) The costs associated with generating the steam and
installing the insulation are known to be $4/10°J
and $100/m of pipe length, respectively. If the
steam line is to operate 7500 h/yr, how many years
are needed to pay back the initial investment in
insulation?

An uninsulated, thin-walled pipe of 100-mm diameter is
used to transport water to equipment that operates out-
doors and uses the water as a coolant. During particularly
harsh winter conditions, the pipe wall achieves a temper-
ature of —15°C and a cylindrical layer of ice forms on the
inner surface of the wall. If the mean water temperature
is 3°C and a convection coefficient of 2000 W/m? - K is
maintained at the inner surface of the ice, which is at
0°C, what is the thickness of the ice layer?

Steam flowing through a long, thin-walled pipe main-
tains the pipe wall at a uniform temperature of 500 K.
The pipe is covered with an insulation blanket comprised
of two different materials, A and B.

The interface between the two materials may be
assumed to have an infinite contact resistance, and the
entire outer surface is exposed to air for which 7., =
300 K and & = 25 W/m?-K.

Ky = 2 W/meK

kg = 0.25 W/m-K

/// T, h

(a) Sketch the thermal circuit of the system. Label
(using the preceding symbols) all pertinent nodes and
resistances.

(b) For the prescribed conditions, what is the total heat
loss from the pipe? What are the outer surface tem-
peratures T 55y and T yg)?

3.62 A bakelite coating is to be used with a 10-mm-diameter

conducting rod, whose surface is maintained at 200°C by
passage of an electrical current. The rod is in a fluid at
25°C, and the convection coefficient is 140 W/m?-K.
What is the critical radius associated with the coating?
What is the heat transfer rate per unit length for the bare
rod and for the rod with a coating of bakelite that corre-
sponds to the critical radius? How much bakelite should
be added to reduce the heat transfer associated with the
bare rod by 25%?

Spherical Wall

3.63 A storage tank consists of a cylindrical section that has

a length and inner diameter of L = 2m and D; = 1m,
respectively, and two hemispherical end sections. The
tank is constructed from 20-mm-thick glass (Pyrex) and
is exposed to ambient air for which the temperature is
300K and the convection coefficient is 10 W/m*-K.
The tank is used to store heated oil, which maintains the
inner surface at a temperature of 400 K. Determine the
electrical power that must be supplied to a heater sub-
merged in the oil if the prescribed conditions are to be
maintained. Radiation effects may be neglected, and the
Pyrex may be assumed to have a thermal conductivity
of 1.4 W/m-K.

3.64 Consider the liquid oxygen storage system and the lab-

oratory environmental conditions of Problem 1.49. To
reduce oxygen loss due to vaporization, an insulating
layer should be applied to the outer surface of the con-
tainer. Consider using a laminated aluminum foil/glass
mat insulation, for which the thermal conductivity and
surface emissivity are k = 0.00016 W/m - K and ¢ = 0.20,
respectively.

(a) If the container is covered with a 10-mm-thick
layer of insulation, what is the percentage reduction
in oxygen loss relative to the uncovered container?

Compute and plot the oxygen evaporation rate
(kg/s) as a function of the insulation thickness # for
0=¢=50mm.

3.65 A spherical Pyrex glass shell has inside and outside

diameters of D; = 0.1 m and D, = 0.2 m, respectively.
The inner surface is at 7, ; = 100°C while the outer sur-
face is at T, = 45°C.

(a) Determine the temperature at the midpoint of the
shell thickness, 7(r,, = 0.075 m).

(b) For the same surface temperatures and dimensions
as in part (a), show how the midpoint temperature
would change if the shell material were aluminum.

3.66 In Example 3.6, an expression was derived for the criti-

cal insulation radius of an insulated, cylindrical tube.
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Derive the expression that would be appropriate for an
insulated sphere.

A hollow aluminum sphere, with an electrical heater in
the center, is used in tests to determine the thermal con-
ductivity of insulating materials. The inner and outer
radii of the sphere are 0.15 and 0.18 m, respectively,
and testing is done under steady-state conditions with
the inner surface of the aluminum maintained at 250°C.
In a particular test, a spherical shell of insulation is cast
on the outer surface of the sphere to a thickness of
0.12 m. The system is in a room for which the air tem-
perature is 20°C and the convection coefficient at the
outer surface of the insulation is 30 W/m?-K. If 80 W
are dissipated by the heater under steady-state condi-
tions, what is the thermal conductivity of the insulation?

A spherical tank for storing liquid oxygen on the space
shuttle is to be made from stainless steel of 0.80-m outer
diameter and 5-mm wall thickness. The boiling point and
latent heat of vaporization of liquid oxygen are 90 K and
213 kJ/kg, respectively. The tank is to be installed in a
large compartment whose temperature is to be maintained
at 240 K. Design a thermal insulation system that will
maintain oxygen losses due to boiling below 1 kg/day.

A spherical, cryosurgical probe may be imbedded in
diseased tissue for the purpose of freezing, and thereby
destroying, the tissue. Consider a probe of 3-mm diam-
eter whose surface is maintained at —30°C when
imbedded in tissue that is at 37°C. A spherical layer of
frozen tissue forms around the probe, with a tempera-
ture of 0°C existing at the phase front (interface)
between the frozen and normal tissue. If the thermal
conductivity of frozen tissue 1is approximately
1.5 W/m-K and heat transfer at the phase front may be
characterized by an effective convection coefficient of
50 W/m?- K, what is the thickness of the layer of frozen
tissue (assuming negligible perfusion)?

A spherical vessel used as a reactor for producing phar-
maceuticals has a 10-mm-thick stainless steel wall
(k=17W/m-K) and an inner diameter of 1 m. The
exterior surface of the vessel is exposed to ambient air
(T, = 25°C) for which a convection coefficient of
6 W/m?- K may be assumed.

(a) During steady-state operation, an inner surface
temperature of 50°C is maintained by energy gener-
ated within the reactor. What is the heat loss from
the vessel?

(b) If a 20-mm-thick layer of fiberglass insulation
(k = 0.040 W/m-K) is applied to the exterior of the
vessel and the rate of thermal energy generation is
unchanged, what is the inner surface temperature of

the vessel?

3.71

3.72

3.73
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The wall of a spherical tank of 1-m diameter contains
an exothermic chemical reaction and is at 200°C when
the ambient air temperature is 25°C. What thickness of
urethane foam is required to reduce the exterior temper-
ature to 40°C, assuming the convection coefficient is
20 W/m?-K for both situations? What is the percentage
reduction in heat rate achieved by using the insulation?

A composite spherical shell of inner radius r; = 0.25 m
is constructed from lead of outer radius r, = 0.30 m and
AISI 302 stainless steel of outer radius r; = 0.31 m. The
cavity is filled with radioactive wastes that generate heat
atarate of ¢ = 5 X 10° W/m?. It is proposed to submerge
the container in oceanic waters that are at a temperature of
T., = 10°C and provide a uniform convection coefficient
of h = 500 W/m? - K at the outer surface of the container.
Are there any problems associated with this proposal?

The energy transferred from the anterior chamber of the
eye through the cornea varies considerably depending
on whether a contact lens is worn. Treat the eye as a
spherical system and assume the system to be at steady
state. The convection coefficient %, is unchanged with
and without the contact lens in place. The cornea and
the lens cover one-third of the spherical surface area.

T., h
Anterior —l
chamber
Cornea Contact
lens

Values of the parameters representing this situation
are as follows:

r; = 10.2 mm r, = 12.7 mm

r; = 16.5 mm T.,=21°C
T.,=37°C k, = 0.80 W/m - K
k, = 0.35 W/m-K h, =6 Wim?+K

h = 12 W/m?+ K

(a) Construct the thermal circuits, labeling all potentials
and flows for the systems excluding the contact lens
and including the contact lens. Write resistance ele-
ments in terms of appropriate parameters.

(b) Determine the heat loss from the anterior chamber
with and without the contact lens in place.

(c) Discuss the implication of your results.
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The outer surface of a hollow sphere of radius r, is sub-
jected to a uniform heat flux ¢5. The inner surface at r,
is held at a constant temperature 7 ;.

(a) Develop an expression for the temperature distribu-
tion 7(r) in the sphere wall in terms of g5, T, 1y, 12,
and the thermal conductivity of the wall material k.

(b) If the inner and outer tube radii are r; = 50 mm and
r, = 100 mm, what heat flux ¢5 is required to main-
tain the outer surface at 7, = 50°C, while the inner
surface is at 7 ; = 20°C? The thermal conductivity
of the wall material is k = 10 W/m-K.

A spherical shell of inner and outer radii r; and r,,
respectively, is filled with a heat-generating material
that provides for a uniform volumetric generation rate
(W/m?) of g. The outer surface of the shell is exposed to
a fluid having a temperature 7, and a convection coeffi-
cient s. Obtain an expression for the steady-state tem-
perature distribution 7(r) in the shell, expressing your
result in terms of r;, r,, g, h, T.,, and the thermal conduc-
tivity k of the shell material.

A spherical tank of 3-m diameter contains a liquified-
petroleum gas at —60°C. Insulation with a thermal con-
ductivity of 0.06 W/m-K and thickness 250 mm is
applied to the tank to reduce the heat gain.

(a) Determine the radial position in the insulation layer
at which the temperature is 0°C when the ambient
air temperature is 20°C and the convection coeffi-
cient on the outer surface is 6 W/m?*- K.

(b) If the insulation is pervious to moisture from the

atmospheric air, what conclusions can you reach

about the formation of ice in the insulation? What
effect will ice formation have on heat gain to the

LP gas? How could this situation be avoided?

A transistor, which may be approximated as a hemi-
spherical heat source of radius r, = 0.1 mm, is embed-
ded in a large silicon substrate (k = 125 W/m - K) and
dissipates heat at a rate ¢g. All boundaries of the silicon
are maintained at an ambient temperature of T, = 27°C,
except for the top surface, which is well insulated.

\\\j,o ——— Silicon

substrat
ql

Obtain a general expression for the substrate tempera-
ture distribution and evaluate the surface temperature
of the heat source for ¢ = 4 W.

3.78

One modality for destroying malignant tissue involves
imbedding a small spherical heat source of radius r,
within the tissue and maintaining local temperatures
above a critical value 7, for an extended period. Tissue
that is well removed from the source may be assumed
to remain at normal body temperature (7, = 37°C).
Obtain a general expression for the radial temperature
distribution in the tissue under steady-state conditions
for which heat is dissipated at a rate g. If r, = 0.5 mm,
what heat rate must be supplied to maintain a tissue tem-
perature of 7=7,=42°C in the domain 0.5 <r=
Smm? The tissue thermal conductivity is approxi-
mately 0.5 W/m - K. Assume negligible perfusion.

Conduction with Thermal Energy Generation

3.79

Outside chamber
T, , h

3.80

The air inside a chamber at T,,; = 50°C is heated con-
vectively with 2, = 20 W/m? - K by a 200-mm-thick wall
having a thermal conductivity of 4 W/m+ K and a uni-
form heat generation of 1000 W/m?>. To prevent any
heat generated within the wall from being lost to the
outside of the chamber at T, = 25°C with h, =5
W/m? - K, a very thin electrical strip heater is placed on
the outer wall to provide a uniform heat flux, ¢

Strip heater, ¢,

M

Wall, &, §

Inside chamber
T, oh

e, 0! Yo
X L

(a) Sketch the temperature distribution in the wall on
T — x coordinates for the condition where no heat
generated within the wall is lost to the outside of
the chamber.

(b) What are the temperatures at the wall boundaries,
7(0) and T(L), for the conditions of part (a)?

(c) Determine the value of ¢ that must be supplied by the
strip heater so that all heat generated within the wall is
transferred to the inside of the chamber.

(d) If the heat generation in the wall were switched off
while the heat flux to the strip heater remained con-
stant, what would be the steady-state temperature,
T(0), of the outer wall surface?

Consider cylindrical and spherical shells with inner and
outer surfaces at r, and r, maintained at uniform tem-
peratures T, and T ,, respectively. If there is uniform
heat generation within the shells, obtain expressions for
the steady-state, one-dimensional radial distributions
of the temperature, heat flux, and heat rate. Contrast
your results with those summarized in Appendix C.
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A plane wall of thickness 0.1 m and thermal conductiv-
ity 25 W/m-K having uniform volumetric heat genera-
tion of 0.3 MW/m? is insulated on one side, while the
other side is exposed to a fluid at 92°C. The convection
heat transfer coefficient between the wall and the fluid
is 500 W/m?-K. Determine the maximum temperature
in the wall.

Large, cylindrical bales of hay used to feed livestock in
the winter months are D = 2m in diameter and are
stored end-to-end in long rows. Microbial energy gener-
ation occurs in the hay and can be excessive if the
farmer bales the hay in a too-wet condition. Assuming
the thermal conductivity of baled hay to be
k =0.04 W/m - K, determine the maximum steady-state
hay temperature for dry hay (¢ = 1W/m?), moist hay
(¢ = 10 W/m®), and wet hay (¢ = 100 W/m®). Ambient
conditions are T,, = 0°C and i = 25 W/m?- K.

Consider the cylindrical bales of hay in Problem 3.82.
It is proposed to utilize the microbial energy generation
associated with wet hay to heat water. Consider a 30-mm
diameter, thin-walled tube inserted lengthwise through
the middle of a cylindrical bale. The tube carries water at
T.,; = 20°C with h; = 200 W/m?- K.

(a) Determine the steady-state heat transfer to the water
per unit length of tube.

(b) Plot the radial temperature distribution in the hay,
1(r).

(c) Plot the heat transfer to the water per unit length of
tube for bale diameters of 0.2m =D = 2m.

Consider one-dimensional conduction in a plane com-
posite wall. The outer surfaces are exposed to a fluid at
25°C and a convection heat transfer coefficient of
1000 W/m? - K. The middle wall B experiences uniform
heat generation ¢y, while there is no generation in walls
A and C. The temperatures at the interfaces are 7, =
261°Cand T, = 211°C.

T T,
T, h T, h
dg
F*LAA’F*2LB4" LC Fﬁ
ky=25W/mK L,=30mm
ke =50 W/mK  Lg=30mm
Lc =20 mm

(a) Assuming negligible contact resistance at the inter-
faces, determine the volumetric heat generation gy
and the thermal conductivity kg.
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(b) Plot the temperature distribution, showing its
important features.

(c) Consider conditions corresponding to a loss
of coolant at the exposed surface of material A
(h = 0). Determine 7, and 7, and plot the tempera-
ture distribution throughout the system.

3.85 Consider a plane composite wall that is composed of

three materials (materials A, B, and C are arranged left
to right) of thermal conductivities k, = 0.24 W/m*K,
kg = 0.13 W/m-K, and k- = 0.50 W/m-K. The thick-
nesses of the three sections of the wall are L, = 20 mm,
Ly = 13 mm, and L = 20 mm. A contact resistance of
R/, = 10?m?-K/W exists at the interface between
materials A and B, as well as at the interface between
materials B and C. The left face of the composite wall
is insulated, while the right face is exposed to convec-
tive conditions characterized by h = 10 W/m*-K, T, =
20°C. For Case 1, thermal energy is generated within
material A at the rate gy, = 5000 W/m®. For Case 2,
thermal energy is generated within material C at the
rate ge = 5000 W/m®.

(a) Determine the maximum temperature within the com-
posite wall under steady-state conditions for Case 1.

(b) Sketch the steady-state temperature distribution on
T — x coordinates for Case 1.

(c) Sketch the steady-state temperature distribution for
Case 2 on the same 7 — x coordinates used for Case 1.

3.86 An air heater may be fabricated by coiling Nichrome

wire and passing air in cross flow over the wire.
Consider a heater fabricated from wire of diameter D =
I mm, electrical resistivity p, = 107® Q+m, thermal
conductivity k = 25 W/m - K, and emissivity ¢ = 0.20.
The heater is designed to deliver air at a temperature of
T.. = 50°C under flow conditions that provide a con-
vection coefficient of 7 = 250 W/m?-K for the wire.
The temperature of the housing that encloses the wire
and through which the air flows is T, = 50°C.

Wire

(D, L,p,, k& Trsy) Housing, Ty,
Air
—
—
\ T., h
AE

A

If the maximum allowable temperature of the wire is
T,ax = 1200°C, what is the maximum allowable elec-
tric current /? If the maximum available voltage is
AE = 110V, what is the corresponding length L of
wire that may be used in the heater and the power
rating of the heater? Hint: In your solution, assume
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negligible temperature variations within the wire, but
after obtaining the desired results, assess the validity of
this assumption.

Consider the composite wall of Example 3.7. In the
Comments section, temperature distributions in the wall
were determined assuming negligible contact resistance
between materials A and B. Compute and plot the tem-
perature distributions if the thermal contact resistance is
R'.=10*m- K/W.

Consider uniform thermal energy generation inside a
one-dimensional plane wall of thickness L with one
surface held at 7 ; and the other surface insulated.

(a) Find an expression for the conduction heat flux to the
cold surface and the temperature of the hot surface 7 ,,
expressing your results in terms of k, g, L, and T ;.

(b) Compare the heat flux found in part (a) with the heat
flux associated with a plane wall without energy gen-
eration whose surface temperatures are 7 ; and 7,.

A plane wall of thickness 2L and thermal conductivity k
experiences a uniform volumetric generation rate ¢. As
shown in the sketch for Case 1, the surface at x = —L is
perfectly insulated, while the other surface is main-
tained at a uniform, constant temperature 7,. For Case
2, a very thin dielectric strip is inserted at the midpoint
of the wall (x = 0) in order to electrically isolate the
two sections, A and B. The thermal resistance of
the strip is R 0.0005 m?-K/W. The parameters
associated with the wall are k= 50W/m-K, L=
20mm, ¢ =5 X 10°W/m?, and T, = 50°C.

Case 2

(a) Sketch the temperature distribution for Case 1 on
T — x coordinates. Describe the key features of this
distribution. Identify the location of the maximum
temperature in the wall and calculate this temperature.

(b) Sketch the temperature distribution for Case 2 on
the same 7 — x coordinates. Describe the key fea-
tures of this distribution.

(c) What is the temperature difference between the two
walls at x = 0 for Case 2?

(d) What is the location of the maximum temperature
in the composite wall of Case 2? Calculate this
temperature.

3.90

391

Thin dielectric strip, R

A nuclear fuel element of thickness 2L is covered with
a steel cladding of thickness b. Heat generated within
the nuclear fuel at a rate ¢ is removed by a fluid at T,
which adjoins one surface and is characterized by a
convection coefficient 4. The other surface is well insu-
lated, and the fuel and steel have thermal conductivities
of k; and k,, respectively.

Nuclear fuel

Steel ‘1 J |

Insulation -

1 14

! T., h
iy |

Lowx

b

(a) Obtain an equation for the temperature distribution
T(x) in the nuclear fuel. Express your results in
terms of ¢, k;, L, b, kg, h, and T.,.

(b) Sketch the temperature distribution 7(x) for the
entire system.

Consider the clad fuel element of Problem 3.90.

(a) Using appropriate relations from Tables C.1 and C.2,
obtain an expression for the temperature distribution
T(x) in the fuel element. For k, = 60 W/m*K, L =
I5mm, b=3mm, k =15W/m-K, h= 10,000
W/m?-K, and T, = 200°C, what are the largest and
smallest temperatures in the fuel element if heat is
generated uniformly at a volumetric rate of ¢ = 2 X
107 W/m?®? What are the corresponding locations?

(b) If the insulation is removed and equivalent convec-
tion conditions are maintained at each surface,
what is the corresponding form of the temperature
distribution in the fuel element? For the conditions
of part (a), what are the largest and smallest tem-
peratures in the fuel? What are the corresponding
locations?

(c) For the conditions of parts (a) and (b), plot the tem-

perature distributions in the fuel element.

In Problem 3.79 the strip heater acts to guard against

3.93

heat losses from the wall to the outside, and the
required heat flux ¢/ depends on chamber operating
conditions such as ¢ and T.; As a first step in
designing a controller for the guard heater, compute
and plot ¢, and 7(0) as a function of ¢ for 200 = ¢ =
2000 W/m? and T, ; = 30, 50, and 70°C.

The exposed surface (x = 0) of a plane wall of thermal
conductivity k is subjected to microwave radiation that
causes volumetric heating to vary as

_%)

i = d, (1
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where ¢, (W/m®) is a constant. The boundary at x = L is
perfectly insulated, while the exposed surface is main-
tained at a constant temperature 7,. Determine the tem-
perature distribution 7(x) in terms of x, L, k, ¢,, and T,

A quartz window of thickness L serves as a viewing port
in a furnace used for annealing steel. The inner surface
(x = 0) of the window is irradiated with a uniform heat
flux ¢, due to emission from hot gases in the furnace. A
fraction, B, of this radiation may be assumed to be
absorbed at the inner surface, while the remaining radia-
tion is partially absorbed as it passes through the quartz.
The volumetric heat generation due to this absorption
may be described by an expression of the form
g = (1 = B)goae™™

where « is the absorption coefficient of the quartz.
Convection heat transfer occurs from the outer surface
(x = L) of the window to ambient air at T, and is char-
acterized by the convection coefficient 4. Convection
and radiation emission from the inner surface may be
neglected, along with radiation emission from the outer
surface. Determine the temperature distribution in the
quartz, expressing your result in terms of the foregoing
parameters.

For the conditions described in Problem 1.44, determine
the temperature distribution, 7(r), in the container,
expressing your result in terms of ¢,, r,, T, h, and the
thermal conductivity k of the radioactive wastes.

A cylindrical shell of inner and outer radii, r; and r,,
respectively, is filled with a heat-generating material
that provides a uniform volumetric generation rate
(W/m®) of §. The inner surface is insulated, while the
outer surface of the shell is exposed to a fluid at 7, and
a convection coefficient A.

(a) Obtain an expression for the steady-state tempera-
ture distribution 7(r) in the shell, expressing your
result in terms of r;, r,, ¢, h, T., and the thermal
conductivity k of the shell material.

(b) Determine an expression for the heat rate, ¢'(r,), at
the outer radius of the shell in terms of ¢ and shell
dimensions.

The cross section of a long cylindrical fuel element in a
nuclear reactor is shown. Energy generation occurs uni-
formly in the thorium fuel rod, which is of diameter
D = 25 mm and is wrapped in a thin aluminum cladding.

Coolant
T., h

e
R ——

Thin aluminum
cladding

Thorium
fuel rod
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(a) It is proposed that, under steady-state conditions,
the system operates with a generation rate of ¢ =
7 X 10® W/m? and cooling system characteristics of
T, =95°C and h = 7000 W/m?-K. Is this pro-
posal satisfactory?

Explore the effect of variations in ¢ and & by plot-
ting temperature distributions 7(r) for a range of
parameter values. Suggest an envelope of accept-
able operating conditions.

3.98 A nuclear reactor fuel element consists of a solid

cylindrical pin of radius r; and thermal conductivity k.
The fuel pin is in good contact with a cladding material
of outer radius r, and thermal conductivity k.. Consider
steady-state conditions for which uniform heat genera-
tion occurs within the fuel at a volumetric rate ¢ and the
outer surface of the cladding is exposed to a coolant
that is characterized by a temperature 7, and a convec-
tion coefficient A.

(a) Obtain equations for the temperature distributions
T;(r) and T.(r) in the fuel and cladding, respec-
tively. Express your results exclusively in terms of
the foregoing variables.

(b) Consider a uranium oxide fuel pin for which k; = 2
W/m-K and r, = 6 mm and cladding for which
k, =25 W/m+K and r, =9 mm. If g =2 X 10°
W/m?®, h = 2000 W/m?-K, and T., = 300 K, what
is the maximum temperature in the fuel element?

mCompute and plot the temperature distribution,
T(r), for values of h = 2000, 5000, and 10,000
W/m?-K. If the operator wishes to maintain the
centerline temperature of the fuel element below
1000 K, can she do so by adjusting the coolant flow
and hence the value of 4?

3.99 Consider the configuration of Example 3.8, where uni-

form volumetric heating within a stainless steel tube is
induced by an electric current and heat is transferred by
convection to air flowing through the tube. The tube
wall has inner and outer radii of r, = 25 mm and r, =
35 mm, a thermal conductivity of k£ = 15 W/m-K, an
electrical resistivity of p, = 0.7 X 107° Q}*m, and a
maximum allowable operating temperature of 1400 K.

(a) Assuming the outer tube surface to be perfectly
insulated and the airflow to be characterized by a
temperature and convection coefficient of T, ; =
400 K and 7, = 100 W/m?*K, determine the maxi-
mum allowable electric current /.

Compute and plot the radial temperature distribu-
tion in the tube wall for the electric current of part (a)
and three values of /2, (100, 500, and 1000 W/m?-K).
For each value of h,, determine the rate of heat
transfer to the air per unit length of tube.
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r, =11 mm

ry =14 mm

In practice, even the best of insulating materials
would be unable to maintain adiabatic conditions at
the outer tube surface. Consider use of a refractory
insulating material of thermal conductivity & = 1.0
W/m - K and neglect radiation exchange at its outer
surface. For 1, = 100 W/m?+ K and the maximum
allowable current determined in part (a), compute
and plot the temperature distribution in the compos-
ite wall for two values of the insulation thickness
(6 = 25 and 50 mm). The outer surface of the insula-
tion is exposed to room air for which 7. , = 300 K
and h, = 25 W/m?- K. For each insulation thickness,
determine the rate of heat transfer per unit tube
length to the inner airflow and the ambient air.

3.100 A high-temperature, gas-cooled nuclear reactor consists

of a composite cylindrical wall for which a thorium fuel
element (k = 57 W/m+ K) is encased in graphite (k = 3
W/m:+K) and gaseous helium flows through an annular
coolant channel. Consider conditions for which the helium
temperature is 7., = 600 K and the convection coefficient
at the outer surface of the graphite is 4 = 2000 W/m?- K.

ry=8mm

Coolant channel with
helium flow (7., h)
Graphite

Thorium, ¢

(a) If thermal energy is uniformly generated in the fuel
element at a rate ¢ = 10® W/m?>, what are the tem-
peratures 7 and 7, at the inner and outer surfaces,
respectively, of the fuel element?

Compute and plot the temperature distribution in

the composite wall for selected values of ¢. What
is the maximum allowable value of ¢?

3.101 A long cylindrical rod of diameter 200 mm with ther-

mal conductivity of 0.5 W/m-K experiences uniform
volumetric heat generation of 24,000 W/m?. The rod is
encapsulated by a circular sleeve having an outer
diameter of 400 mm and a thermal conductivity of
4 W/m - K. The outer surface of the sleeve is exposed
to cross flow of air at 27°C with a convection coeffi-
cient of 25 W/m?- K.

(a) Find the temperature at the interface between the
rod and sleeve and on the outer surface.

(b) What is the temperature at the center of the rod?
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3.102 A radioactive material of thermal conductivity k is cast

as a solid sphere of radius r, and placed in a liquid bath
for which the temperature 7, and convection coeffi-
cient i are known. Heat is uniformly generated within
the solid at a volumetric rate of ¢ Obtain the steady-
state radial temperature distribution in the solid,
expressing your result in terms of r,, ¢, k, h, and T.,.

3.103 Radioactive wastes are packed in a thin-walled spherical

container. The wastes generate thermal energy nonuni-
formly according to the relation ¢ = ¢,[1 — (+/r,)*] where
¢ is the local rate of energy generation per unit volume, ¢
is a constant, and 7, is the radius of the container. Steady-
state conditions are maintained by submerging the con-
tainer in a liquid that is at 7, and provides a uniform
convection coefficient /.

Coolant

T .
- §=4q,[1- (/)4

—
—

Determine the temperature distribution, 7(r), in the con-
tainer. Express your result in terms of ¢, r,, T.., h, and
the thermal conductivity k of the radioactive wastes.

3.104 Radioactive wastes (k,, = 20 W/m-K) are stored in a

spherical, stainless steel (k, = 15 W/m*K) container of
inner and outer radii equal to r; = 0.5 mand r, = 0.6 m.
Heat is generated volumetrically within the wastes at a
uniform rate of g = 10° W/m?, and the outer surface of
the container is exposed to a water flow for which & =
1000 W/m?*-K and T, = 25°C.

Water
T. h
Rad|oact|ve.wastes,
—_— kl’W’ q
- 5 Stainless steel,
k.

£

(a) Evaluate the steady-state outer surface tempera-
ture, T ,.

(b) Evaluate the steady-state inner surface tempera-
ture, 7.

(c) Obtain an expression for the temperature distribu-
tion, 7(r), in the radioactive wastes. Express your
result in terms of r,, T, k. and ¢ Evaluate the
temperature at r = 0.
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(d)|A proposed extension of the foregoing design
involves storing waste materials having the same
thermal conductivity but twice the heat generation
(g=2 X 10° W/m®) in a stainless steel container
of equivalent inner radius (r; = 0.5 m). Safety
considerations dictate that the maximum system
temperature not exceed 475°C and that the con-
tainer wall thickness be no less than = 0.04 m
and preferably at or close to the original design
(t = 0.1 m). Assess the effect of varying the outside
convection coefficient to a maximum achievable
value of & = 5000 W/m?:K (by increasing the
water velocity) and the container wall thickness. Is
the proposed extension feasible? If so, recommend
suitable operating and design conditions for 4 and ¢,
respectively.

3.105 Unique characteristics of biologically active materi-

als such as fruits, vegetables, and other products
require special care in handling. Following harvest
and separation from producing plants, glucose is
catabolized to produce carbon dioxide, water vapor,
and heat, with attendant internal energy generation.
Consider a carton of apples, each of 80-mm diameter,
which is ventilated with air at 5°C and a velocity
of 0.5 m/s. The corresponding value of the heat trans-
fer coefficient is 7.5 W/m?-K. Within each apple
thermal energy is uniformly generated at a total rate
of 4000 J/kg-day. The density and thermal conduc-
tivity of the apple are 840kg/m® and 0.5 W/m-K,

respectively.
Apple, 80 mm
T& diameter

(a) Determine the center and surface

temperatures.

apple

(b) |For the stacked arrangement of apples within the
crate, the convection coefficient depends on
the velocity as h = C,V**, where C, =10.1
W/m?: K+ (m/s)***. Compute and plot the center
and surface temperatures as a function of the air
velocity for 0.1 = V=1 m/s.

3.106

Plane wall
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Consider the plane wall, long cylinder, and sphere
shown schematically, each with the same characteris-
tic length a, thermal conductivity k, and uniform volu-
metric energy generation rate g.

Long cylinder

Sphere

X X

(a) On the same graph, plot the steady-state dimen-
sionless temperature, [T(x or ) — T(a)]/[(ga*)/2k],
versus the dimensionless characteristic length, x/a
or r/a, for each shape.

(b

Z

Which shape has the smallest temperature differ-
ence between the center and the surface? Explain
this behavior by comparing the ratio of the volume-
to-surface area.

(c) Which shape would be preferred for use as a
nuclear fuel element? Explain why.

Extended Surfaces

3.107

Copper
ring

The radiation heat gage shown in the diagram is
made from constantan metal foil, which is coated black
and is in the form of a circular disk of radius R and
thickness 7. The gage is located in an evacuated enclo-
sure. The incident radiation flux absorbed by the foil, g,
diffuses toward the outer circumference and into the
larger copper ring, which acts as a heat sink at the con-
stant temperature 7(R). Two copper lead wires are
attached to the center of the foil and to the ring to com-
plete a thermocouple circuit that allows for measure-
ment of the temperature difference between the foil
center and the foil edge, AT = T(0) — T(R).

| Evacuated
! . enclosure
PRl
I —
F(L” T(O)| T(R)
| \. LCopper
wires
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Obtain the differential equation that determines 7(r), the
temperature distribution in the foil, under steady-state
conditions. Solve this equation to obtain an expression
relating AT to ¢/ You may neglect radiation exchange
between the foil and its surroundings.

Copper tubing is joined to the absorber of a flat-plate
solar collector as shown.

17 Cover
plate
~— Evacuated
space
— Absorber

plate

K3
t

The aluminum alloy (2024-T6) absorber plate is 6 mm
thick and well insulated on its bottom. The top surface
of the plate is separated from a transparent cover plate
by an evacuated space. The tubes are spaced a distance
L of 0.20 m from each other, and water is circulated
through the tubes to remove the collected energy. The
water may be assumed to be at a uniform temperature of
T,, = 60°C. Under steady-state operating conditions for
which the net radiation heat flux to the surface is ¢p,q =
800 W/m?, what is the maximum temperature on the
plate and the heat transfer rate per unit length of tube?
Note that g4 represents the net effect of solar radiation
absorption by the absorber plate and radiation exchange
between the absorber and cover plates. You may
assume the temperature of the absorber plate directly
above a tube to be equal to that of the water.

"
9rad

w

One method that is used to grow nanowires (nanotubes
with solid cores) is to initially deposit a small droplet
of a liquid catalyst onto a flat surface. The surface and
catalyst are heated and simultaneously exposed to a
higher-temperature, low-pressure gas that contains a
mixture of chemical species from which the nanowire
is to be formed. The catalytic liquid slowly absorbs the
species from the gas through its top surface and con-
verts these to a solid material that is deposited onto the
underlying liquid-solid interface, resulting in construc-
tion of the nanowire. The liquid catalyst remains sus-
pended at the tip of the nanowire.

Consider the growth of a 15-nm-diameter silicon
carbide nanowire onto a silicon carbide surface. The
surface is maintained at a temperature of 7, = 2400 K,
and the particular liquid catalyst that is used must be
maintained in the range 2400 K = T, = 3000 K to per-
form its function. Determine the maximum length of a

Ga

e

Liquid catalyst

nanowire that may be grown for conditions character-
ized by h = 10° W/m?+K and T, = 8000 K. Assume
properties of the nanowire are the same as for bulk sil-
icon carbide.

s absorption

/

Nanowire

R

Initial time Intermediate time  Maximum length

3.110 Consider the manufacture of photovoltaic silicon, as

3.111

Working fluid

described in Problem 1.42. The thin sheet of silicon
is pulled from the pool of molten material very
slowly and is subjected to an ambient temperature of
T, = 527°C within the growth chamber. A convec-
tion coefficient of & =7.5W/m?>-K is associated
with the exposed surfaces of the silicon sheet when it
is inside the growth chamber. Calculate the maxi-
mum allowable velocity of the silicon sheet V;. The
latent heat of fusion for silicon is hy, = 1.8 X 10°
J/kg. It can be assumed that the thermal energy
released due to solidification is removed by conduc-
tion along the sheet.

Copper tubing is joined to a solar collector plate of
thickness #, and the working fluid maintains the tem-
perature of the plate above the tubes at 7,. There is a
uniform net radiation heat flux g4 to the top surface
of the plate, while the bottom surface is well insulated.
The top surface is also exposed to a fluid at T, that

provides for a uniform convection coefficient /.

Air

h

——Absorber plate

Working fluid

2L '!

(a) Derive the differential equation that governs the
temperature distribution 7(x) in the plate.
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(b) Obtain a solution to the differential equation for
appropriate boundary conditions.

3.112 A thin flat plate of length L, thickness 7, and width

W > L is thermally joined to two large heat sinks that
are maintained at a temperature 7,,. The bottom of the
plate is well insulated, while the net heat flux to
the top surface of the plate is known to have a uniform
value of ¢).

M
X

Heat 5 Heat
sink { { { { {ﬁ { sink
Tﬂ s Sk o TO

3

t

(a) Derive the differential equation that determines
the steady-state temperature distribution 7(x) in
the plate.

(b) Solve the foregoing equation for the temperature
distribution, and obtain an expression for the rate
of heat transfer from the plate to the heat sinks.

3.113 Consider the flat plate of Problem 3.112, but with the

heat sinks at different temperatures, 7(0) = 7, and
T(L) = T;, and with the bottom surface no longer insu-
lated. Convection heat transfer is now allowed to
occur between this surface and a fluid at 7., with a
convection coefficient 4.

(a) Derive the differential equation that determines the
steady-state temperature distribution 7(x) in the plate.

(b) Solve the foregoing equation for the temperature
distribution, and obtain an expression for the rate
of heat transfer from the plate to the heat sinks.

[(©)] For ¢} = 20,000 W/m®, T, = 100°C, T, = 35°C,
T, =25C, k=25 W/m-K, h=50 W/m”-K,
L =100 mm, t = 5 mm, and a plate width of W =
30 mm, plot the temperature distribution and
determine the sink heat rates, ¢,(0) and ¢,(L). On
the same graph, plot three additional temperature
distributions corresponding to changes in the fol-
lowing parameters, with the remaining parameters
unchanged: (i) ¢ = 30,000 W/m?, (ii) h = 200
W/m?-K, and (iii) the value of ¢/ for which
g,(0) = 0 when & = 200 W/m?- K.

3.114 The temperature of a flowing gas is to be measured with

a thermocouple junction and wire stretched between
two legs of a sting, a wind tunnel test fixture. The junc-
tion is formed by butt-welding two wires of different
material, as shown in the schematic. For wires of diame-
ter D =125 pum and a convection coefficient of
h =700 W/m* - K, determine the minimum separation

3.115
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distance between the two legs of the sting, L = L, + L,,
to ensure that the sting temperature does not influence
the junction temperature and, in turn, invalidate the gas
temperature measurement. Consider two different types
of thermocouple junctions consisting of (i) copper and
constantan wires and (ii) chromel and alumel wires.
Evaluate the thermal conductivity of copper and con-
stantan at 7 =300K. Use kg, =19W/m-K and
ky =29 W/m+K for the thermal conductivities of the
chromel and alumel wires, respectively.

Thermocouple junction

A bonding operation utilizes a laser to provide a constant
heat flux, ¢}, across the top surface of a thin adhesive-
backed, plastic film to be affixed to a metal strip as
shown in the sketch. The metal strip has a thickness
d = 1.25 mm, and its width is large relative to that of the
film. The thermophysical properties of the strip are
p = 7850kg/m’, ¢, = 435J/kg-K, and k = 60 W/m-K.
The thermal resistance of the plastic film of width
w; = 40 mm is negligible. The upper and lower surfaces
of the strip (including the plastic film) experience con-
vection with air at 25°C and a convection coefficient of
10 W/m*-K. The strip and film are very long in the
direction normal to the page. Assume the edges of the
metal strip are at the air temperature (77,,).

Laser source, g,

Plastic film -
<« T, h
Metal stri -
P e {
|
= ! W, -t
Ly
—
— T, h
—
(a) Derive an expression for the temperature distribu-

tion in the portion of the steel strip with the plastic
film (—w,/2 = x = +w,/2).

If the heat flux provided by the laser is 10,000
W/m?, determine the temperature of the plastic film
at the center (x = 0) and its edges (x = *w,/2).

(b

=

(©

Plot the temperature distribution for the entire strip
and point out its special features.
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A thin metallic wire of thermal conductivity &, diame-
ter D, and length 2L is annealed by passing an electri-
cal current through the wire to induce a uniform volu-
metric heat generation ¢. The ambient air around
the wire is at a temperature 7, while the ends of the
wire at x = *L are also maintained at 7,,. Heat trans-
fer from the wire to the air is characterized by
the convection coefficient 4. Obtain expressions for the
following:

(a) The steady-state temperature distribution 7(x) along
the wire,

(b) The maximum wire temperature.

(c) The average wire temperature.

A motor draws electric power Py, from a supply line
and delivers mechanical power P,., to a pump
through a rotating copper shaft of thermal conductiv-
ity k,, length L, and diameter D. The motor is
mounted on a square pad of width W, thickness ¢, and
thermal conductivity k,. The surface of the housing
exposed to ambient air at T, is of area A,, and the cor-
responding convection coefficient is h;,. Opposite
ends of the shaft are at temperatures of 7}, and T.,, and
heat transfer from the shaft to the ambient air is char-
acterized by the convection coefficient /. The base of
the pad is at 7.

—_—

T, by —— Motor housing, T, A,

—
T, hy — T
Electric E—
motor
—] Pump
%L »
Pad, k, L Spatt, k, P

s? © mech

(a) Expressing your result in terms of Pee., Ppecns ky»
L, D, W, t, k,, Ay, h;, and h,, obtain an expression
for (T, — T.,).

(b) What is the value of T, if P = 25 kW, P .., =
15 kW, k, = 400 Wm+K, L =0.5m, D = 0.05 m,
W=0.7m,t=0.05m, k,=05Wm-K, A, =2
m?, h, =10 W/m>-K, h, =300 W/m?>-K, and
T, = 25°C?

Consider the fuel cell stack of Problem 1.58. The
t = 0.42-mm-thick membranes have a nominal thermal
conductivity of k = 0.79 W/m-K that can be increased
to kg, = 15.1 W/m-K by loading 10%, by volume, car-
bon nanotubes into the catalyst layers. The membrane

3.119

experiences uniform volumetric energy generation at a
rate of ¢ = 10 X 10° W/m’®. Air at T, = 80°C provides
a convection coefficient of /1, = 35 W/m*+ K on one side
of the membrane, while hydrogen at 7, = 80°C,
hy, =235 W/m?-K flows on the opposite side of the
membrane. The flow channels are 2L = 3 mm wide. The
membrane is clamped between bipolar plates, each of
which is at a temperature 7y, = 80°C.

Membrane

2L —

Hydrogen Air
T, hy, Ty hy

\ Bipolar

plate, pr

(a) Derive the differential equation that governs the
temperature distribution 7(x) in the membrane.

(b) Obtain a solution to the differential equation,
assuming the membrane is at the bipolar plate

temperature at x = 0 and x = 2L.

(c) Plot the temperature distribution 7(x) from x = 0
to x = L for carbon nanotube loadings of 0% and
10% by volume. Comment on the ability of the
carbon nanotubes to keep the membrane below its

softening temperature of 85°C.

Consider a rod of diameter D, thermal conductivity k,
and length 2L that is perfectly insulated over one por-
tion of its length, —L = x = 0, and experiences con-
vection with a fluid (7., h) over the other portion,
0 =x = +L. One end is maintained at 7,, while the
other is separated from a heat sink at 73 by an interfa-
cial thermal contact resistance R}

/> Insulation

Ry, = 4% 107 m*K/MW

P———— |
\ | -
Rod +L
D=5mm T, = 20°C
L =50 mm h = 500 W/m?K
k = 100 W/m-K
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(a) Sketch the temperature distribution on 7 — x coor-
dinates and identify its key features. Assume that
T,>T;> T,.

(b) Derive an expression for the midpoint temperature
T, in terms of the thermal and geometric parame-
ters of the system.

(c) For T, = 200°C, T; = 100°C, and the conditions pro-
vided in the schematic, calculate 7, and plot the tem-
perature distribution. Describe key features of the
distribution and compare it to your sketch of part (a).

3.120 | A carbon nanotube is suspended across a trench of width

s = 5 um that separates two islands, each at 7., = 300 K.
A focused laser beam irradiates the nanotube at a dis-
tance & from the left island, delivering g = 10 uW
of energy to the nanotube. The nanotube temperature
is measured at the midpoint of the trench using a
point probe. The measured nanotube temperature is
T,=3245K for §, =15 pm and 7, =3264K for
& =35 um.

3.121

Temperature measurement

f Laser irradiation
[ s/2 — /

\. T.=T,, = 300K

[N

a—————— 5 =5 um

Carbon nanotube

Determine the two contact resistances, R,.; and R, .p
at the left and right ends of the nanotube, respec-
tively. The experiment is performed in a vacuum with
T, = 300 K. The nanotube thermal conductivity and
diameter are k., = 3100 W/m+K and D = 14 nm,
respectively.

A probe of overall length L = 200 mm and diameter D =
12.5 mm is inserted through a duct wall such that a por-
tion of its length, referred to as the immersion length L,
is in contact with the water stream whose temperature,
T, is to be determined. The convection coefficients
over the immersion and ambient-exposed lengths are
h; = 1100 W/m?-K and h, = 10 W/m?>-K, respectively.
The probe has a thermal conductivity of 177 W/m*K and
is in poor thermal contact with the duct wall.

—— &)
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Ambient air Duct wall
T..,h 7T

0,0 "0

'
] t

L

(a) Derive an expression for evaluating the measure-
ment error, AT, = Ty, — T, ;, which is the differ-
ence between the tip temperature, 7Ty, and the
water temperature, 7., ;. Hint: Define a coordinate
system with the origin at the duct wall and treat
the probe as two fins extending inward and out-
ward from the duct, but having the same base tem-
perature. Use Case A results from Table 3.4.

(b) | With the water and ambient air temperatures at 80
and 20°C, respectively, calculate the measurement
error, AT.,, as a function of immersion length for
the conditions L/L = 0.225, 0.425, and 0.625.

Compute and plot the effects of probe thermal
conductivity and water velocity (h;) on the mea-
surement error.

3.122 A rod of diameter D = 25 mm and thermal conductiv-

ity k = 60 W/m*K protrudes normally from a furnace
wall that is at T,, = 200°C and is covered by insulation
of thickness L;,; = 200 mm. The rod is welded to the
furnace wall and is used as a hanger for supporting
instrumentation cables. To avoid damaging the cables,
the temperature of the rod at its exposed surface, T,
must be maintained below a specified operating limit of
Tax = 100°C. The ambient air temperature is 7T, =
25°C, and the convection coefficient is & = 15 W/m?* K.

Air
T., h
w
E—
Hot furnace — T, - > D
wall dé) | i
Insulation
L, >

(a) Derive an expression for the exposed surface temper-
ature 7, as a function of the prescribed thermal and
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geometrical parameters. The rod has an exposed
length L,, and its tip is well insulated.

Will a rod with L, = 200 mm meet the specified
operating limit? If not, what design parameters
would you change? Consider another material,
increasing the thickness of the insulation, and
increasing the rod length. Also, consider how you
might attach the base of the rod to the furnace wall
as a means to reduce 7T,.

A metal rod of length 2L, diameter D, and thermal
conductivity k is inserted into a perfectly insulating
wall, exposing one-half of its length to an airstream
that is of temperature 7, and provides a convection
coefficient h at the surface of the rod. An electro-
magnetic field induces volumetric energy generation at
a uniform rate ¢ within the embedded portion of the rod.

T =20°C
h =100 W/m?K

L =50 mm

—>x D =5mm

k =25 Wm-K
g=1x10°wm?

(a) Derive an expression for the steady-state tempera-
ture T, at the base of the exposed half of the rod.
The exposed region may be approximated as a
very long fin.

(b) Derive an expression for the steady-state tempera-
ture T, at the end of the embedded half of the rod.

(c) Using numerical values provided in the schematic,
plot the temperature distribution in the rod and
describe key features of the distribution. Does the
rod behave as a very long fin?

A very long rod of 5-mm diameter and uniform thermal
conductivity k = 25 W/m* K is subjected to a heat treat-
ment process. The center, 30-mm-long portion of the
rod within the induction heating coil experiences uni-
form volumetric heat generation of 7.5 X 10° W/m?®.

T,

Induction heating coil o
FTT 0.:]& ee /T

—— —
|
I

L Y i J

Region experiencing ¢

Very long rod,

5-mm dia.

The unheated portions of the rod, which protrude from
the heating coil on either side, experience convection
with the ambient air at 7,, = 20°C and & = 10 W/m?>+ K.
Assume that there is no convection from the surface of
the rod within the coil.

(a) Calculate the steady-state temperature 7,, of the rod
at the midpoint of the heated portion in the coil.

(b) Calculate the temperature of the rod 7}, at the edge
of the heated portion.

3.125 From Problem 1.71, consider the wire leads connecting

the transistor to the circuit board. The leads are of ther-
mal conductivity k, thickness 7, width w, and length L.
One end of a lead is maintained at a temperature 7, cor-
responding to the transistor case, while the other end
assumes the temperature 7}, of the circuit board. During
steady-state operation, current flow through the leads
provides for uniform volumetric heating in the amount
¢, while there is convection cooling to air that is at 7.,
and maintains a convection coefficient /.

Transistor
e case(T,)

= Wire

lead(k)

X
‘> Circuit

board(7},)
N 7
Gap I w

(a) Derive an equation from which the temperature
distribution in a wire lead may be determined. List
all pertinent assumptions.

(b) Determine the temperature distribution in a wire
lead, expressing your results in terms of the pre-
scribed variables.

3.126 Turbine blades mounted to a rotating disc in a gas

turbine engine are exposed to a gas stream that is at
T., = 1200°C and maintains a convection coefficient
of h = 250 W/m?-K over the blade.

Blade tip

Gas stream

ol -~

Air coolant
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The blades, which are fabricated from Inconel,
k = 20 W/m - K, have a length of L = 50 mm. The
blade profile has a uniform cross-sectional area of
A, =6 X 107" m? and a perimeter of P = 110 mm. A
proposed blade-cooling scheme, which involves
routing air through the supporting disc, is able to
maintain the base of each blade at a temperature of
T, = 300°C.

(a) If the maximum allowable blade temperature is
1050°C and the blade tip may be assumed to be adi-
abatic, is the proposed cooling scheme satisfactory?

(b) For the proposed cooling scheme, what is the rate
at which heat is transferred from each blade to the
coolant?

3.127 In a test to determine the friction coefficient u associ-

ated with a disk brake, one disk and its shaft are
rotated at a constant angular velocity w, while an
equivalent disk/shaft assembly is stationary. Each disk
has an outer radius of r, = 180 mm, a shaft radius of
r, = 20 mm, a thickness of # = 12 mm, and a thermal
conductivity of k =15 W/m*K. A known force F is
applied to the system, and the corresponding torque 7
required to maintain rotation is measured. The disk
contact pressure may be assumed to be uniform (i.e.,
independent of location on the interface), and the disks
may be assumed to be well insulated from the sur-
roundings.

2

§ Disk interface,
. friction coefficient, u

(a) Obtain an expression that may be used to evaluate
w from known quantities.

(b) For the region r; = r = r,, determine the radial
temperature distribution 7(r) in the disk, where
T(r,) = T, is presumed to be known.

(c) Consider test conditions for which F'= 200 N,
® =40 rad/s, 7= 8 N-m, and 7, = 80°C. Evalu-
ate the friction coefficient and the maximum disk
temperature.

3.128 Consider an extended surface of rectangular cross sec-

tion with heat flow in the longitudinal direction.

T

In this problem we seek to determine conditions for
which the transverse (y-direction) temperature differ-
ence within the extended surface is negligible com-
pared to the temperature difference between the surface
and the environment, such that the one-dimensional
analysis of Section 3.6.1 is valid.

(a) Assume that the transverse temperature distribu-
tion is parabolic and of the form

() = T,) _ <X>2
T, — T, \!

where T (x) is the surface temperature and 7,(x)
is the centerline temperature at any x-location.
Using Fourier’s law, write an expression for the
conduction heat flux at the surface, q;’(t), in terms
of T,and T,.

Write an expression for the convection heat flux at
the surface for the x-location. Equating the two
expressions for the heat flux by conduction and
convection, identify the parameter that determines
the ratio (T, — TY)/(T, — T.,).

From the foregoing analysis, develop a
criterion for establishing the validity of the one-
dimensional assumption used to model an
extended surface.

(b)

(©)

Simple Fins

3.129

3.130

A long, circular aluminum rod is attached at one end
to a heated wall and transfers heat by convection to a
cold fluid.

(a) If the diameter of the rod is tripled, by how much
would the rate of heat removal change?

(b) If a copper rod of the same diameter is used in
place of the aluminum, by how much would the
rate of heat removal change?

A brass rod 100 mm long and 5 mm in diameter
extends horizontally from a casting at 200°C. The rod
is in an air environment with 7,, = 20°C and & = 30
W/m? - K. What is the temperature of the rod 25, 50,
and 100 mm from the casting?
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3.131 The extent to which the tip condition affects the ther-

mal performance of a fin depends on the fin geometry
and thermal conductivity, as well as the convection
coefficient. Consider an alloyed aluminum (k=
180 W/m-K) rectangular fin of length L = 10 mm,
thickness ¢+ = 1 mm, and width w > . The base tem-
perature of the fin is 7}, = 100°C, and the fin is exposed
to a fluid of temperature 7,, = 25°C.

(a) Assuming a uniform convection coefficient of 4 =
100 W/m? - K over the entire fin surface, deter-
mine the fin heat transfer rate per unit width gf,
efficiency 7y, effectiveness &, thermal resistance
per unit width R; ;, and the tip temperature 7(L) for
Cases A and B of Table 3.4. Contrast your results
with those based on an innite n  approximation.

(b) |Explore the effect of variations in the convection
coefficient on the heat rate for 10 < h < 1000
W/m?-K. Also consider the effect of such varia-
tions for a stainless steel fin (k = 15 W/m* K).

3.132 A pin fin of uniform, cross-sectional area is fabricated

of an aluminum alloy (k= 160 W/m+K). The fin
diameter is D = 4 mm, and the fin is exposed to con-
vective conditions characterized by & = 220 W/m?-K.
It is reported that the fin efficiency is 1, = 0.65. Deter-
mine the fin length L and the fin effectiveness &
Account for tip convection.

3.133 The extent to which the tip condition affects the thermal

performance of a fin depends on the fin geometry and
thermal conductivity, as well as the convection coeffi-
cient. Consider an alloyed aluminum (k = 180 W/m-K)
rectangular fin whose base temperature is 7;, = 100°C.
The fin is exposed to a fluid of temperature 7,, = 25°C,
and a uniform convection coefficient of A4 = 100
W/m?-K may be assumed for the fin surface.

(a) For a fin of length L = 10mm, thickness
t = 1 mm, and width w > ¢, determine the fin heat
transfer rate per unit width q}, efficiency 7, effec-
tiveness &, thermal resistance per unit width Rt’f,
and tip temperature 7(L) for Cases A and B of
Table 3.4. Contrast your results with those based
on an innite n  approximation.

(b) |Explore the effect of variations in L on the heat rate
for 3 < L < 50 mm. Also consider the effect of such
variations for a stainless steel fin (k = 15 W/m-K).

3.134 A straight fin fabricated from 2024 aluminum alloy

(k = 185 W/m-K) has a base thickness of r = 3 mm
and a length of L = 15 mm. Its base temperature is
T, = 100°C, and it is exposed to a fluid for which
T, =20°C and h = 50 W/m?-K. For the foregoing
conditions and a fin of unit width, compare the fin heat

rate, efficiency, and volume for rectangular, triangular,
and parabolic profiles.

3.135 |Triangular and parabolic straight fins are subjected to

3.136

3.137

3.138

the same thermal conditions as the rectangular straight
fin of Problem 3.134.

(a) Determine the length of a triangular fin of unit width
and base thickness r = 3 mm that will provide the
same fin heat rate as the straight rectangular fin.
Determine the ratio of the mass of the triangular
straight fin to that of the rectangular straight fin.

(b) Repeat part (a) for a parabolic straight fin.

Two long copper rods of diameter D = 10 mm are sol-
dered together end to end, with solder having a melt-
ing point of 650°C. The rods are in air at 25°C with a
convection coefficient of 10 W/m?-K. What is the
minimum power input needed to effect the soldering?

Circular copper rods of diameter D = 1 mm and
length L = 25 mm are used to enhance heat transfer
from a surface that is maintained at 7;; = 100°C. One
end of the rod is attached to this surface (at x = 0),
while the other end (x = 25 mm) is joined to a second
surface, which is maintained at 7, , = 0°C. Air flowing
between the surfaces (and over the rods) is also at a
temperature of T,, = 0°C, and a convection coefficient
of & = 100 W/m?-K is maintained.

(a) What is the rate of heat transfer by convection
from a single copper rod to the air?

(b) What is the total rate of heat transfer from a
1m X 1 m section of the surface at 100°C, if a
bundle of the rods is installed on 4-mm centers?

During the initial stages of the growth of the nanowire
of Problem 3.109, a slight perturbation of the liquid
catalyst droplet can cause it to be suspended on the top
of the nanowire in an off-center position. The resulting
nonuniform deposition of solid at the solid-liquid
interface can be manipulated to form engineered shapes
such as a nanospring, that is characterized by a spring
radius r, spring pitch s, overall chord length L. (Iength
running along the spring), and end-to-end length L, as
shown in the sketch. Consider a silicon carbide
nanospring of diameter D = 15nm, r = 30nm, s =
25 nm, and L, = 425 nm. From experiments, it is known
that the average spring pitch s varies with average tem-
perature T by the relation ds/dT = 0.1 nm/K. Using
this information, a student suggests that a nanoactuator
can be constructed by connecting one end of the
nanospring to a small heater and raising the tempera-
ture of that end of the nano spring above its initial value.
Calculate the actuation distance AL for conditions
where 4 = 10° W/m?>-K, T,, = T, = 25°C, with a base
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temperature of 7, = 50°C. If the base temperature can
be controlled to within 1°C, calculate the accuracy to
which the actuation distance can be controlled. Hint:
Assume the spring radius does not change when the
spring is heated. The overall spring length may be
approximated by the formula,

5 L.

L= F —
27N Gy

Consider two long, slender rods of the same diameter
but different materials. One end of each rod is
attached to a base surface maintained at 100°C, while
the surfaces of the rods are exposed to ambient air at
20°C. By traversing the length of each rod with a ther-
mocouple, it was observed that the temperatures of
the rods were equal at the positions x, = 0.15 m and
xg = 0.075 m, where x is measured from the base
surface. If the thermal conductivity of rod A is known
to be ky, =70 W/m - K, determine the value of kg
for rod B.

A 40-mm-long, 2-mm-diameter pin fin is fabricated of
an aluminum alloy (k = 140 W/m - K).

(a) Determine the fin heat transfer rate for 7, = 50°C,
T., = 25°C, h = 1000 W/m? - K, and an adiabatic
tip condition.

(b) An engineer suggests that by holding the fin tip at
a low temperature, the fin heat transfer rate can be
increased. For T(x = L) = 0°C, determine the new
fin heat transfer rate. Other conditions are as in
part (a).

(c) Plot the temperature distribution, 7(x), over the
range 0 =x =L for the adiabatic tip case and
the prescribed tip temperature case. Also show the
ambient temperature in your graph. Discuss relevant
features of the temperature distribution.

(d) Plot the fin heat transfer rate over the range
0 =< h = 1000 W/m?-K for the adiabatic tip case
and the prescribed tip temperature case. For the
prescribed tip temperature case, what would the
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calculated fin heat transfer rate be if Equation
3.78 were used to determine g, rather than Equa-
tion 3.76?

3.141 An experimental arrangement for measuring the ther-

mal conductivity of solid materials involves the use of
two long rods that are equivalent in every respect,
except that one is fabricated from a standard material
of known thermal conductivity k, while the other is
fabricated from the material whose thermal conductiv-
ity kg is desired. Both rods are attached at one end to a
heat source of fixed temperature 7}, are exposed to a
fluid of temperature 7., and are instrumented with
thermocouples to measure the temperature at a fixed
distance x; from the heat source. If the standard mater-
ial is aluminum, with k£, = 200 W/m - K, and measure-
ments reveal values of 7, = 75°C and Ty = 60°C at x,
for T, = 100°C and T,, = 25°C, what is the thermal
conductivity kg of the test material?

Fin Systems and Arrays

3.142 Finned passages are frequently formed between paral-

lel plates to enhance convection heat transfer in com-
pact heat exchanger cores. An important application is
in electronic equipment cooling, where one or more
air-cooled stacks are placed between heat-dissipating
electrical components. Consider a single stack of rec-
tangular fins of length L and thickness ¢, with convec-
tion conditions corresponding to / and 7.

200 mm —————\ ——>

(a) Obtain expressions for the fin heat transfer rates,
qr, and ¢y, in terms of the base temperatures, T,
and 7.

(b) In a specific application, a stack that is 200 mm
wide and 100 mm deep contains 50 fins, each of
length L = 12 mm. The entire stack is made from
aluminum, which is everywhere 1.0 mm thick. If
temperature limitations associated with electrical
components joined to opposite plates dictate maxi-
mum allowable plate temperatures of 7, = 400 K
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and 7; = 350 K, what are the corresponding maxi-
mum power dissipations if # = 150 W/m?+K and
T, = 300K?

3.143 The fin array of Problem 3.142 is commonly found

3.144

in compact heat exchangers, whose function is to
provide a large surface area per unit volume in trans-
ferring heat from one fluid to another. Consider con-
ditions for which the second fluid maintains equiva-
lent temperatures at the parallel plates, T, = T,
thereby establishing symmetry about the midplane of
the fin array. The heat exchanger is 1 m long in the
direction of the flow of air (first fluid) and 1 m wide
in a direction normal to both the airflow and the fin
surfaces. The length of the fin passages between
adjoining parallel plates is L = 8§ mm, whereas the
fin thermal conductivity and convection coefficient are
k=200 W/m-K (aluminum) and % = 150 W/m?-K,
respectively.

(a) If the fin thickness and pitch are + = 1l mm and
S = 4 mm, respectively, what is the value of the
thermal resistance R,, for a one-half section of
the fin array?

Subject to the constraints that the fin thickness and
pitch may not be less than 0.5 and 3 mm, respec-
tively, assess the effect of changes in # and S.

An isothermal silicon chip of width W = 20 mm on a
side is soldered to an aluminum heat sink (k=
180 W/m*K) of equivalent width. The heat sink has a
base thickness of L, = 3 mm and an array of rectangu-
lar fins, each of length L= 15 mm. Airflow at T, =
20°C is maintained through channels formed by the
fins and a cover plate, and for a convection coefficient
of h=100W/m?-K, a minimum fin spacing of
1.8 mm is dictated by limitations on the flow pressure
drop. The solder joint has a thermal resistance of
R, .=2X10"° m*-K/W.

/Chip, T, q,

4’ Solder, R/,

Heat sink, k
.//

| Cover plate

(a) Consider limitations for which the array has
N = 11 fins, in which case values of the fin thickness
t = 0.182 mm and pitch S = 1.982 mm are obtained
from the requirements that W= (N — 1)S + ¢ and
S—1t=18mm. If the maximum allowable chip
temperature is 7, = 85°C, what is the corresponding
value of the chip power ¢g.? An adiabatic fin tip con-
dition may be assumed, and airflow along the outer
surfaces of the heat sink may be assumed to provide
a convection coefficient equivalent to that associated
with airflow through the channels.

With (§—1 and h fixed at 1.8 mm and 100
W/m?- K, respectively, explore the effect of increas-
ing the fin thickness by reducing the number of fins.
With N=11 and S — ¢ fixed at 1.8 mm, but
relaxation of the constraint on the pressure drop,
explore the effect of increasing the airflow, and
hence the convection coefficient.

3.145 As seen in Problem 3.109, silicon carbide nanowires of

diameter D = 15 nm can be grown onto a solid silicon
carbide surface by carefully depositing droplets of cata-
lyst liquid onto a flat silicon carbide substrate. Silicon
carbide nanowires grow upward from the deposited
drops, and if the drops are deposited in a pattern, an
array of nanowire fins can be grown, forming a silicon
carbide nano-heat sink. Consider finned and unfinned
electronics packages in which an extremely small,
10 wm X 10 wm electronics device is sandwiched
between two d = 100-nm-thick silicon carbide sheets. In
both cases, the coolant is a dielectric liquid at 20°C. A
heat transfer coefficient of # = 1 X 10° W/m?**K exists
on the top and bottom of the unfinned package and on all
surfaces of the exposed silicon carbide fins, which are
each L = 300 nm long. Each nano-heat sink includes a
200 X 200 array of nanofins. Determine the maximum
allowable heat rate that can be generated by the elec-
tronic device so that its temperature is maintained at
T, < 85°C for the unfinned and finned packages.

T., h
E——
e
T e Jp——
5 5
Tt _— L d
- N =
e——W=10 pm ——>|
e
—_ vuboouuud douugut
R E—
E—
T., h I
T., h
Unfinned Nano-finned
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3.146 As more and more components are placed on a D = 200 mm
single integrated circuit (chip), the amount of heat |
L . . T,
that is dissipated continues to increase. However, A
this increase is limited by the maximum allowable —> Ly =10 mm
chip operating temperature, which is approximately | = , _l_l
75°C. To maximize heat dissipation, it is proposed [ i1 | t
that a 4 X 4 array of copper pin fins be metallurgi- E:’ _4 t Ly=25mm
cally joined to the outer surface of a square chip that w =80 mm
is 12.7 mm on a side. hpy Tec
—>||-—z= 5 mm Tours
Top view — Pinfins, D, Sideview
O O O ! In Przoblem 3.146, the prescripefi vah_le Qf h, = 1000
— > T W/m-~-K is large and characteristic of liquid cooling. In
O O O O Toor by —> Ly || — chip, practice it would be far more preferable to use air cool-
- i q., T. ing, for which a reasonable upper limit to the convec-
O O O O r—Chip——og tion coefficient would be /1, = 250 W/m?: K. Assess the
LI effect of changes in the pin fin geometry on the chip
0O 0 0 0O heat rate if the remaining conditions of Problem 3.146,
«—W=12.7 mm—> TAirh :: - g’sri';‘ac;ce including a maximum allowable chip temperature of
=2 R} JA, ' 75°C, remain in effect. Parametric variations that may
Board, k, be considered include the total number of pins N in the

3.147

(a) Sketch the equivalent thermal circuit for the pin—
chip-board assembly, assuming one-dimensional,
steady-state conditions and negligible contact
resistance between the pins and the chip. In vari-
able form, label appropriate resistances, tempera-
tures, and heat rates.

(b) For the conditions prescribed in Problem 3.27,

what is the maximum rate at which heat can be

dissipated in the chip when the pins are in place?

That is, what is the value of ¢, for T, = 75°C? The

pin diameter and length are D, = 1.5 mm and

L, =15 mm.

A homeowner’s wood stove is equipped with a top
burner for cooking. The D = 200-mm-diameter burner
is fabricated of cast iron (k = 65 W/m-K). The bottom
(combustion) side of the burner has 8 straight fins of uni-
form cross section, arranged as shown in the sketch. A
very thin ceramic coating (e = 0.95) is applied to all sur-
faces of the burner. The top of the burner is exposed to
room conditions (T, = T., = 20°C, h, = 40 Wim? - K),
while the bottom of the burner is exposed to combus-
tion conditions (7, = T., = 450°C, h, = 50 W/m?*+K).
Compare the top surface temperature of the finned
burner to that which would exist for a burner without
fins. Hint: Use the same expression for radiation heat
transfer to the bottom of the finned burner as for the
burner with no fins.

3.149

square array, the pin diameter D, and the pin length L,,.
However, the product N'°D, should not exceed 9 mm
to ensure adequate airflow passage through the array.
Recommend a design that enhances chip cooling.

Water is heated by submerging 50-mm-diameter, thin-
walled copper tubes in a tank and passing hot combus-
tion gases (T, = 750 K) through the tubes. To enhance
heat transfer to the water, four straight fins of uniform
cross section, which form a cross, are inserted in each
tube. The fins are 5 mm thick and are also made of
copper (k = 400 W/m-K).

D =50 mm

T,=350K
Water

+— Fins (r =5 mm)

3.150

Gases
T,=750 K
h, = 30 W/m?+K

Tube wall

If the tube surface temperature is 7, = 350 K and the
gas-side convection coefficient is i, = 30 W/m?-K,
what is the rate of heat transfer to the water per meter
of pipe length?

As a means of enhancing heat transfer from high-
performance logic chips, it is common to attach a
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heat sink to the chip surface in order to increase the
surface area available for convection heat transfer.
Because of the ease with which it may be manufac-
tured (by taking orthogonal sawcuts in a block of
material), an attractive option is to use a heat sink
consisting of an array of square fins of width w on a
side. The spacing between adjoining fins would be
determined by the width of the sawblade, with the
sum of this spacing and the fin width designated as
the fin pitch S. The method by which the heat sink is
joined to the chip would determine the interfacial
contact resistance, Ry .

4

'Yy

=

Heat sink
Top View
-

T

<« T ,h

-«

Square fins

|

1

Heat sink

Interface,

R"

te

Chip,
9., T,

Consider a square chip of width W, =16 mm and
conditions for which cooling is provided by a dielec-
tric liquid with 7., = 25°C and h = 1500 W/m*-K. The
heat sink is fabricated from copper (k = 400 W/m*K),
and its characteristic dimensions are w = 0.25 mm,
§ = 0.50 mm, L; = 6 mm, and L, = 3 mm. The pre-
scribed values of w and S represent minima imposed
by manufacturing constraints and the need to maintain
adequate flow in the passages between fins.

(a) If a metallurgical joint provides a contact resis-
tance of R). =5 X 107 m?-K/W and the maxi-
mum allowable chip temperature is 85°C, what is
the maximum allowable chip power dissipation
q.? Assume all of the heat to be transferred
through the heat sink.

(b)| It may be possible to increase the heat dissipation
by increasing w, subject to the constraint that

(§ —w) = 0.25 mm, and/or increasing L, (subject
to manufacturing constraints that L; < 10 mm).
Assess the effect of such changes.

Because of the large number of devices in today’s PC
chips, finned heat sinks are often used to maintain the
chip at an acceptable operating temperature. Two fin
designs are to be evaluated, both of which have base
(unfinned) area dimensions of 53 mm X 57 mm. The
fins are of square cross section and fabricated from an
extruded aluminum alloy with a thermal conductivity
of 175 W/m - K. Cooling air may be supplied at 25°C,
and the maximum allowable chip temperature is 75°C.
Other features of the design and operating conditions
are tabulated.

Fin Dimensions

Convection
Cross Section Length  Number of Coefcient
Design w X w(mm) L (mm) Finsin Array (W/m?-K)
A 3X3 30 6X9 125
B 1X1 7 14 X 17 375
i 57 mm i
EN R EpEpERERERERENE
o000 ooooCQ rL=30mm*
JOo0d0dodooon
53 mm
O o00ooddn
1O OoO0O00L0 3mmx3mm 7,=75C
cross section
vy [OM O
L54 pins, 9 x 6 array
(Design A)

3.152

Determine which fin arrangement is superior. In your
analysis, calculate the heat rate, efficiency, and effec-
tiveness of a single fin, as well as the total heat rate
and overall efficiency of the array. Since real estate
inside the computer enclosure is important, compare
the total heat rate per unit volume for the two designs.

Consider design B of Problem 3.151. Over time, dust
can collect in the fine grooves that separate the
fins. Consider the buildup of a dust layer of thickness
L,, as shown in the sketch. Calculate and plot the total
heat rate for design B for dust layers in the range 0 =
L, = 5 mm. The thermal conductivity of the dust can
be taken as k; = 0.032 W/m-K. Include the effects of
convection from the fin tip.
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[e——————L=7mm

Dust

1 mm X 1mm T,=75°C
cross section

3.153 A long rod of 20-mm diameter and a thermal conduc-

tivity of 1.5 W/m-K has a uniform internal volumetric
thermal energy generation of 10® W/m?>. The rod is cov-
ered with an electrically insulating sleeve of 2-mm
thickness and thermal conductivity of 0.5 W/m* K. A spi-
der with 12 ribs and dimensions as shown in the sketch
has a thermal conductivity of 175 W/m*K, and is used to
support the rod and to maintain concentricity with an 80-
mm-diameter tube. Air at T,, = 25°C passes over the spi-
der surface, and the convection coefficient is 20 W/m?* K.
The outer surface of the tube is well insulated.

We wish to increase volumetric heating within the
rod, while not allowing its centerline temperature to
exceed 100°C. Determine the impact of the following
changes, which may be effected independently or con-
currently: (i) increasing the air speed and hence the con-
vection coefficient; (ii) changing the number and/or
thickness of the ribs; and (iii) using an electrically non-
conducting sleeve material of larger thermal conductivity
(e.g., amorphous carbon or quartz). Recommend a realis-
tic configuration that yields a significant increase in 4.

Spider with
12 ribs

ri=12mm r,=17 mm
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while air at T, = 25°C flows through the annular
region formed by the larger concentric tube.

(a) Sketch the equivalent thermal circuit of the heater
and relate each thermal resistance to appropriate
system parameters.

(b) If h;=5000 W/m?-K and h, =200 W/m?>-K,
what is the heat rate per unit length?

mAssess the effect of increasing the number of fins
N and/or the fin thickness ¢ on the heat rate, sub-
ject to the constraint that Nt < 50 mm.

3.155 Determine the percentage increase in heat transfer asso-

ciated with attaching aluminum fins of rectangular pro-
file to a plane wall. The fins are 50 mm long, 0.5 mm
thick, and are equally spaced at a distance of 4 mm (250
fins/m). The convection coefficient associated with the
bare wall is 40 W/m?-K, while that resulting from
attachment of the fins is 30 W/m?- K.

3.156 Heat is uniformly generated at the rate of 2 X 10°

W/m? in a wall of thermal conductivity 25 W/m-K
and thickness 60 mm. The wall is exposed to convec-
tion on both sides, with different heat transfer coeffi-
cients and temperatures as shown. There are straight
rectangular fins on the right-hand side of the wall, with
dimensions as shown and thermal conductivity of
250 W/m-K. What is the maximum temperature that
will occur in the wall?

rg=40mm t=4mm L.=20 mm
I L=ry—-ry=23mm !
. . - k = 25 Wik
3.154 An air heater consists of a steel tube (k = 20 W/m*K), =2 % 105W/m3

with inner and outer radii of 7, = 13 mm and r, = 16 f]l} :f%g!/cmz'K hy = 12 Wim?2K
mm, respectively, and eight integrally machined longi- ~ “=!~ 6=2mm T.,=15°C
tudinal fins, each of thickness ¢ =3 mm. The fins 2L =60 mm
extend to a _concentnc tupe, which is of radius r; = K= 250 Wim-K
40 mm and insulated on its outer surface. Water at a

temperature 7.,; = 90°C flows through the inner tube,
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Aluminum fins of triangular profile are attached to a
plane wall whose surface temperature is 250°C. The
fin base thickness is 2 mm, and its length is 6 mm.
The system is in ambient air at a temperature
of 20°C, and the surface convection coefficient is
40 W/m*- K.

(a) What are the fin efficiency and effectiveness?

(b) What is the heat dissipated per unit width by a
single fin?

An annular aluminum fin of rectangular profile is
attached to a circular tube having an outside diameter
of 25 mm and a surface temperature of 250°C. The fin
is 1 mm thick and 10 mm long, and the temperature
and the convection coefficient associated with the
adjoining fluid are 25°C and 25 W/m?+ K, respectively.
(a) What is the heat loss per fin?

(b) If 200 such fins are spaced at 5-mm increments
along the tube length, what is the heat loss per
meter of tube length?

Annular aluminum fins of rectangular profile are attached
to a circular tube having an outside diameter of 50 mm
and an outer surface temperature of 200°C. The fins are
4 mm thick and 15 mm long. The system is in ambient air
at a temperature of 20°C, and the surface convection
coefficient is 40 W/m? - K.

(a) What are the fin efficiency and effectiveness?

(b) If there are 125 such fins per meter of tube length,

what is the rate of heat transfer per unit length
of tube?

It is proposed to air-cool the cylinders of a combustion
chamber by joining an aluminum casing with annu-
lar fins (k =240 W/m-K) to the cylinder wall (k =
50 W/m-K).

Cylinder wall Aluminum casing
7, T T,
f— t=2mm
—> ——6=2mm
qi—> ?
N
;=60 mm ———> T., h
r =66 mm-———»|

f—r=70mm——

‘|<

r,=95mm >

The air is at 320 K and the corresponding convection
coefficient is 100 W/m?-K. Although heating at the
inner surface is periodic, it is reasonable to assume
steady-state conditions with a time-averaged heat flux of

g/=10° W/m?. Assuming negligible contact resistance
between the wall and the casing, determine the wall inner
temperature 7}, the interface temperature 7', and the fin
base temperature 7},. Determine these temperatures if the
interface contact resistance is R}, = 10~ m? - K/W.

3.161| Consider the air-cooled combustion cylinder of Problem

3.162

3.160, but instead of imposing a uniform heat flux at
the inner surface, consider conditions for which the
time-averaged temperature of the combustion gases is
T, = 1100 K and the corresponding convection coeffi-
cient is h, = 150 W/m?-K. All other conditions,
including the cylinder/casing contact resistance,
remain the same. Determine the heat rate per unit
length of cylinder (W/m), as well as the cylinder inner
temperature 7}, the interface temperatures 7 ; and T},
and the fin base temperature 7). Subject to the con-
straint that the fin gap is fixed at 6 = 2 mm, assess the
effect of increasing the fin thickness at the expense of
reducing the number of fins.

Heat transfer from a transistor may be enhanced by
inserting it in an aluminum sleeve (k = 200 W/m-K)
having 12 integrally machined longitudinal fins on its
outer surface. The transistor radius and height are r, =
2.5 mm and H = 4 mm, respectively, while the fins are
of length L =r; —r,=8mm and uniform thickness
t = 0.8 mm. The thickness of the sleeve base is r, — r; =
1 mm, and the contact resistance of the sleeve-transistor
interface is R}, = 0.6 X 107> m*-K/W. Air at 7., = 20°C
flows over the fin surface, providing an approximately
uniform convection coeffficient of 2 = 30 W/m?- K.

Transistor*I i R;:C" T
T f T
| |
| . | H
| | : l
|
1 . 1

Sleeve with ” ” ”
longitudinal fins 71>
rp—

r3—>|

(a) When the transistor case temperature is 80°C, what
is the rate of heat transfer from the sleeve?

(b) | Identify all of the measures that could be taken to
improve design and/or operating conditions, such
that heat dissipation may be increased while still
maintaining a case temperature of 80°C. In words,
assess the relative merits of each measure. Choose



m Problems

what you believe to be the three most promising
measures, and numerically assess the effect of cor-
responding changes in design and/or operating con-
ditions on thermal performance.

3.163 | Consider the conditions of Problem 3.149 but now allow

3.164

for a tube wall thickness of 5 mm (inner and outer diam-
eters of 50 and 60 mm), a fin-to-tube thermal contact
resistance of 10™* m?-K/W, and the fact that the water
temperature, 7,, = 350 K, is known, not the tube surface
temperature. The water-side convection coefficient is
h,, = 2000 W/m?*- K. Determine the rate of heat transfer
per unit tube length (W/m) to the water. What would be
the separate effect of each of the following design
changes on the heat rate: (i) elimination of the contact
resistance; (ii) increasing the number of fins from four to
eight; and (iii) changing the tube wall and fin material
from copper to AISI 304 stainless steel (k=20
W/m-K)?

A scheme for concurrently heating separate water and
air streams involves passing them through and over
an array of tubes, respectively, while the tube wall is
heated electrically. To enhance gas-side heat transfer,
annular fins of rectangular profile are attached to the
outer tube surface. Attachment is facilitated with a
dielectric adhesive that electrically isolates the fins from
the current-carrying tube wall.

Gas flow

st

l
] [
Ty~ gmom ___%T‘Jr"
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Adhesive, R},

1 ]

LTube, gk,

The
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(a) Assuming uniform volumetric heat generation
within the tube wall, obtain expressions for the
heat rate per unit tube length (W/m) at the inner
(r;) and outer (r,) surfaces of the wall. Express
your results in terms of the tube inner and outer
surface temperatures, T;; and T, ,, and other perti-
nent parameters.

(b) Obtain expressions that could be used to determine
T,,and T,, in terms of parameters associated with

the water- and air-side conditions.

Consider conditions for which the water and air
are at T.; = T., =300 K, with corresponding
convection coefficients of #;, = 2000 W/m?**K and
h, = 100 W/m?- K. Heat is uniformly dissipated in
a stainless steel tube (k, = 15 W/m - K), having
inner and outer radii of r; =25 mm and r, = 30
mm, and aluminum fins (# =6 =2 mm, r, = 55
mm) are attached to the outer surface, with R/, =
10~* m?- K/W. Determine the heat rates and tem-
peratures at the inner and outer surfaces as a func-
tion of the rate of volumetric heating ¢. The upper
limit to ¢ will be determined by the constraints that
T,, not exceed the boiling point of water (100°C)
and T, not exceed the decomposition temperature
of the adhesive (250°C).

Bioheat Equation

Consider the conditions of Example 3.12, except that
the person is now exercising (in the air environment),
which increases the metabolic heat generation rate
by a factor of 8, to 5600 W/m®. At what rate would
the person have to perspire (in liters/s) to maintain the
same skin temperature as in that example?

Consider the conditions of Example 3.12 for an air
environment, except now the air and surroundings
temperatures are both 15°C. Humans respond to cold
by shivering, which increases the metabolic heat
generation rate. What would the metabolic heat gener-
ation rate (per unit volume) have to be to maintain a
comfortable skin temperature of 33°C under these con-
ditions?

Consider heat transfer in a forearm, which can be
approximated as a cylinder of muscle of radius 50 mm
(neglecting the presence of bones), with an outer layer
of skin and fat of thickness 3 mm. There is metabolic
heat generation and perfusion within the muscle. The
metabolic heat generation rate, perfusion rate, arterial
temperature, and properties of blood, muscle, and
skin/fat layer are identical to those in Example 3.12.
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The environment and surroundings are the same as for
the air environment in Example 3.12.

r;=50 mm

b4 =3 mm

(a) Write the bioheat transfer equation in radial coor-
dinates. Write the boundary conditions that
express symmetry at the centerline of the forearm
and specified temperature at the outer surface of
the muscle. Solve the differential equation and
apply the boundary conditions to find an expres-
sion for the temperature distribution. Note that the
derivatives of the modified Bessel functions are
given in Section 3.6.4.

(b) Equate the heat flux at the outer surface of the
muscle to the heat flux through the skin/fat layer
and into the environment to determine the temper-
ature at the outer surface of the muscle.

(c) Find the maximum forearm temperature.

Thermoelectric Power Generation

3.168

For one of the M = 48 modules of Example 3.13, deter-
mine a variety of different efficiency values concerning
the conversion of waste heat to electrical energy.

(a) Determine the thermodynamic efficiency, Nyem =
Pyi/q,.
Determine the figure of merit ZT for one module,

and the thermoelectric efficiency, 7, using Equa-
tion 3.128.

Determine the Carnot efficiency, Mcymo = 1 — To/T}.

(b)

(©)
(d)

Determine both the thermoelectric efficiency and the
Carnot efficiency for the case where h; = h, — .

(e) The energy conversion efficiency of thermoelec-
tric devices is commonly reported by evaluating
Equation 3.128, but with T, ; and 7., used
instead of 7 and T, respectively. Determine the
value of 71, based on the inappropriate use of T,
and T, ,, and compare with your answers for parts

(b) and (d).

3.169 | One of the thermoelectric modules of Example 3.13 is

installed between a hot gas at T.,; = 450°C and a cold
gas at T,,, = 20°C. The convection coefficient associated

with the flowing gases is & = h, = h, = 80 W/m*-K
while the electrical resistance of the load is R, =4(.

eload T

Heat

Cover plate
sink 1, k U/H; Re joad
Air
T hy
I [ ) R O SR IS
l Thermoelectric module
L, _t_ — — EL  Solder, R},
Iy | Iy ; H F"’ T Heat sink 2, k
L T Air o
l T. o hy
S ! i ‘ <L Cover plate
_.l s |._
w

(a) Sketch the equivalent thermal circuit and deter-
mine the electric power generated by the module
for the situation where the hot and cold gases pro-
vide convective heating and cooling directly to the
module (no heat sinks).

(b) Two heat sinks (k= 180 W/m-K; see sketch),
each with a base thickness of L, = 4 mm and fin
length L, = 20 mm, are soldered to the upper and
lower sides of the module. The fin spacing is
3 mm, while the solder joints each have a thermal
resistance of R;.=2.5X 107°m?-K/W. Each
heat sink has N = 11 fins, so that r = 2.182 mm
and S =5.182mm, as determined from the
requirements that W=ON-—-1)S++¢ and
S — t = 3mm. Sketch the equivalent thermal cir-
cuit and determine the electric power generated
by the module. Compare the electric power gener-
ated to your answer for part (a). Assume adiabatic
fin tips and convection coefficients that are the
same as in part (a).

3.170| Thermoelectric modules have been used to generate

electric power by tapping the heat generated by wood
stoves. Consider the installation of the thermoelectric
module of Example 3.13 on a vertical surface of a
wood stove that has a surface temperature of
T, = 375°C. A thermal contact resistance of R, = 5
X 107°m?+K/W exists at the interface between the
stove and the thermoelectric module, while the room
air and walls are at T,, = Ty, = 25°C. The exposed
surface of the thermoelectric module has an emissiv-
ity of ¢ = 0.90 and is subjected to a convection coef-
ficient of 4 = 15W/m?-K. Sketch the equivalent
thermal circuit and determine the electric power
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generated by the module. The load electrical resis-
tance is R, jp,q = 3 €.

The electric power generator for an orbiting satellite
is composed of a long, cylindrical uranium heat
source that is housed within an enclosure of square
cross section. The only way for heat that is gener-
ated by the uranium to leave the enclosure is
through four rows of the thermoelectric modules of
Example 3.13. The thermoelectric modules generate
electric power and also radiate heat into deep space
characterized by Ty, = 4 K. Consider the situation
for which there are 20 modules in each row for
a total of M =4 X 20 = 80 modules. The modules
are wired in series with an electrical load of
R, 10sa = 250 (), and have an emissivity of & = 0.93.
Determine the electric power generated for E, = 1, 10,
and 100 kW. Also determine the surface tempera-
tures of the modules for the three thermal energy
generation rates.

2L—>

Heat source, E,

Insulation

Thermoelectric

module, &

R

e, load

Rows of the thermoelectric modules of Example 3.13
are attached to the flat absorber plate of Problem 3.108.
The rows of modules are separated by L, = 0.5 m and
the backs of the modules are cooled by water at a tem-
perature of T, = 40°C, with h = 45 W/m*-K.

v - A\ =

plate

Insulation

Evacuated
space
Absorber

) plate

Thermoelectric
module

Determine the electric power produced by one row
of thermoelectric modules connected in series electri-
cally with a load resistance of 60 (). Calculate the heat
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transfer rate to the flowing water. Assume rows of
20 immediately adjacent modules, with the lengths of
both the module rows and water tubing to be
L., = 20W where W = 54 mm is the module dimen-
sion taken from Example 3.13. Neglect thermal con-
tact resistances and the temperature drop across the
tube wall, and assume that the high thermal conductiv-
ity tube wall creates a uniform temperature around
the tube perimeter. Because of the thermal resistance
provided by the thermoelectric modules, it is no
longer appropriate to assume that the temperature of
the absorber plate directly above a tube is equal to that
of the water.

Micro- and Nanoscale Conduction

3.173 Determine the conduction heat transfer through an
air layer held between two 10 mm X 10 mm parallel
aluminum plates. The plates are at temperatures
T,, =305K and T,,=295K, respectively, and
the air is at atmospheric pressure. Determine the con-
duction heat rate for plate spacings of L = 1 mm,
L =1 pm, and L = 10 nm. Assume a thermal accom-
modation coefficient of &, = 0.92.

3.174 Determine the parallel plate separation distance L,
above which the thermal resistance associated with
molecule-surface collisions R,,,_; is less than 1% of
the resistance associated with molecule—molecule col-
lisions, R,,_, for (i) air between steel plates with
a, = 0.92 and (ii) helium between clean aluminum
plates with a, = 0.02. The gases are at atmospheric

pressure, and the temperature is 7 = 300 K.

3.175 Determine the conduction heat flux through various plane
layers that are subjected to boundary temperatures of
T, = 301K and T, = 299K at atmospheric pressure.
Hint: Do not account for micro- or nanoscale effects
within the solid, and assume the thermal accommodation

coefficient for an aluminum-—air interface is &, = 0.92.

(a) Case A: The plane layer is aluminum. Determine
the heat flux ¢/ for L, = 600 wm and L, = 600 nm.

Case B: Conduction occurs through an air layer.
Determine the heat flux ¢ for L, = 600 um and
L, = 600 nm.

Case C: The composite wall is composed of air held
between two aluminum sheets. Determine the heat
flux ¢ for L, = 600 um (with aluminum sheet
thicknesses of 6 = 40 wm) and L, = 600 nm (with
aluminum sheet thicknesses of 8 = 40 nm).

(b)

©)

(d)

Case D: The composite wall is composed of 7 air
layers interspersed between 8 aluminum sheets.
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Determine the heat flux ¢ for L, = 600 wm (with
aluminum sheet and air layer thicknesses of
6 =40 um) and L, = 600nm (with aluminum
sheet and air layer thicknesses of 6 = 40 nm).

Aluminum

T2

tot

E

3.176

3.177

Case A Case B
T,y
b
Aluminum
‘ T
| Air Aluminum
X L, x L,
Case C tot Case D tot

The Knudsen number, Kn = A,q/L, is a dimensionless
parameter used to describe potential micro- or nanoscale
effects. Derive an expression for the ratio of the thermal
resistance due to molecule—surface collisions to the ther-
mal resistance associated with molecule-molecule colli-
sions, R, , /R in terms of the Knudsen number,
the thermal accommodation coefficient «,, and the
ratio of specific heats v, for an ideal gas. Plot the criti-
cal Knudsen number, Kng;, that is associated with
R, ,—s/R; -, = 0.01 versus «;, for y =14 and 1.67
(corresponding to air and helium, respectively).

Lm—m>

A nanolaminated material is fabricated with an atomic
layer deposition process, resulting in a series of

3.178

stacked, alternating layers of tungsten and aluminum
oxide, each layer being 6 = 0.5 nm thick. Each tung-
sten—aluminum oxide interface is associated with a
thermal resistance of R;; = 3.85 X 10~° m*-K/W. The
theoretical values of the thermal conductivities of the
thin aluminum oxide and tungsten layers are
ky =1.65W/m-K and kr=6.10W/m-K, respec-
tively. The properties are evaluated at 7 = 300 K.

(a) Determine the effective thermal conductivity of
the nanolaminated material. Compare the value of
the effective thermal conductivity to the bulk ther-
mal conductivities of aluminum oxide and tung-
sten, given in Tables A.1 and A.2.

(b) Determine the effective thermal conductivity of
the nanolaminated material assuming that the ther-
mal conductivities of the tungsten and aluminum

oxide layers are equal to their bulk values.

Gold is commonly used in semiconductor packaging
to form interconnections (also known as interconnects)
that carry electrical signals between different devices
in the package. In addition to being a good electrical
conductor, gold interconnects are also effective at
protecting the heat-generating devices to which they
are attached by conducting thermal energy away from
the devices to surrounding, cooler regions. Consider a
thin film of gold that has a cross section of
60 nm X 250 nm.

(a) For an applied temperature difference of 20°C,
determine the energy conducted along a 1-um-
long, thin-film interconnect. Evaluate properties at
300 K.

(b) Plot the lengthwise (in the 1-um direction) and
spanwise (in the thinnest direction) thermal con-
ductivities of the gold film as a function of the film
thickness L for 30 = L = 140 nm.
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To this point, we have restricted our attention to conduction problems in which the temper-
ature gradient is significant for only one coordinate direction. However, in many cases such
problems are grossly oversimplified if a one-dimensional treatment is used, and it is necessary
to account for multidimensional effects. In this chapter, we consider several techniques for
treating two-dimensional systems under steady-state conditions.

We begin our consideration of two-dimensional, steady-state conduction by briefly
reviewing alternative approaches to determining temperatures and heat rates (Section 4.1).
The approaches range from exact solutions, which may be obtained for idealized conditions,
to approximate methods of varying complexity and accuracy. In Section 4.2 we consider
some of the mathematical issues associated with obtaining an exact solution. In Section 4.3,
we present compilations of existing exact solutions for a variety of simple geometries. Our
objective in Sections 4.4 and 4.5 is to show how, with the aid of a computer, numerical
(nite-difference or nite-element ) methods may be used to accurately predict temperatures
and heat rates within the medium and at its boundaries.

4.1 Alternative Approaches

Consider a long, prismatic solid in which there is two-dimensional heat conduction (Figure 4.1).
With two surfaces insulated and the other surfaces maintained at different temperatures,
T, > T, heat transfer by conduction occurs from surface 1 to 2. According to Fourier’s law,
Equation 2.3 or 2.4, the local heat flux in the solid is a vector that is everywhere perpendicular
to lines of constant temperature (isotherms). The directions of the heat flux vector are repre-
sented by the heat ow lines of Figure 4.1, and the vector itself is the resultant of heat flux
components in the x- and y-directions. These components are determined by Equation 2.6.
Since the heat flow lines are, by definition, in the direction of heat flow, no heat can be
conducted across a heat ow line , and they are therefore sometimes referred to as adiabats.
Conversely, adiabatic surfaces (or symmetry lines) are heat flow lines.

Recall that, in any conduction analysis, there exist two major objectives. The first
objective is to determine the temperature distribution in the medium, which, for the pre-
sent problem, necessitates determining 7(x, y). This objective is achieved by solving the
appropriate form of the heat equation. For two-dimensional, steady-state conditions with
no generation and constant thermal conductivity, this form is, from Equation 2.22,

2 2
PT, PT_

0 4.1
x> 9y 1)

______ W ow i
I‘I =19, +1qy
|
'q;
Isotherms
T

Heat flow
lines

Isotherm

T X

Ficure 4.1 Two-dimensional conduction.
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If Equation 4.1 can be solved for T(x, y), it is then a simple matter to satisfy the second
major objective, which is to determine the heat flux components ¢} and ¢} by applying the
rate equations (2.6). Methods for solving Equation 4.1 include the use of analytical, graph-
ical, and numerical (nite-difference, nite-element,  or boundary-element) approaches.

The analytical method involves effecting an exact mathematical solution to Equation 4.1.
The problem is more difficult than those considered in Chapter 3, since it now involves a
partial, rather than an ordinary, differential equation. Although several techniques are available
for solving such equations, the solutions typically involve complicated mathematical series and
functions and may be obtained for only a restricted set of simple geometries and boundary
conditions [1-5]. Nevertheless, the solutions are of value, since the dependent variable 7 is
determined as a continuous function of the independent variables (x, y). Hence the solution
could be used to compute the temperature at any point of interest in the medium. To illustrate
the nature and importance of analytical techniques, an exact solution to Equation 4.1 is
obtained in Section 4.2 by the method of separation of variables. Conduction shape factors
and dimensionless conduction heat rates (Section 4.3) are compilations of existing solutions
for geometries that are commonly encountered in engineering practice.

In contrast to the analytical methods, which provide exact results at any point, graphi-
cal and numerical methods can provide only approximate results at discrete points.

¥, Although superseded by computer solutions based on numerical procedures, the graphical,
or flux-plotting, method may be used to obtain a quick estimate of the temperature distribu-
tion. Its use is restricted to two-dimensional problems involving adiabatic and isothermal
boundaries. The method is based on the fact that isotherms must be perpendicular to heat
flow lines, as noted in Figure 4.1. Unlike the analytical or graphical approaches, numerical
methods (Sections 4.4 and 4.5) may be used to obtain accurate results for complex, two- or
three-dimensional geometries involving a wide variety of boundary conditions.

4.2 The Method of Separation of Variables

To appreciate how the method of separation of variables may be used to solve two-
dimensional conduction problems, we consider the system of Figure 4.2. Three sides of a
thin rectangular plate or a long rectangular rod are maintained at a constant temperature 7',
while the fourth side is maintained at a constant temperature 7, # T;. Assuming negligible
heat transfer from the surfaces of the plate or the ends of the rod, temperature gradients
normal to the x—y plane may be neglected (9°T/dz* = 0) and conduction heat transfer is pri-
marily in the x- and y-directions.

We are interested in the temperature distribution 7(x, y), but to simplify the solution we
introduce the transformation
T-T,

—_— 4.2
TL—T, (4.2)

0

Substituting Equation 4.2 into Equation 4.1, the transformed differential equation is then

2 2
70, 70 _

0 4.3
x> gy *3)

\(P/ The graphical method is described, and its use is demonstrated, in Section 4S.1.
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y
T, 0=1
wh L

T,,60=0— T(x, y) —7,, 6=0

—=X . . . . .
Ficure 4.2 Two-dimensional conduction in a thin rectangular

OO L L
T, 6=0 plate or a long rectangular rod.

Since the equation is second order in both x and y, two boundary conditions are needed for
each of the coordinates. They are

0(0,y) =0 and 6(x,0)=0
O(L,y)=0 and 6(x,W)=1
Note that, through the transformation of Equation 4.2, three of the four boundary condi-
tions are now homogeneous and the value of 6 is restricted to the range from O to 1.
We now apply the separation of variables technique by assuming that the desired solu-

tion can be expressed as the product of two functions, one of which depends only on x while
the other depends only on y. That is, we assume the existence of a solution of the form

0(x, y) = X(x) - Y(y) 4.4
Substituting into Equation 4.3 and dividing by XY, we obtain

_ldX_1d%

X dx* Yay?

and it is evident that the differential equation is, in fact, separable. That is, the left-hand
side of the equation depends only on x and the right-hand side depends only on y. Hence

the equality can apply in general (for any x or y) only if both sides are equal to the same
constant. Identifying this, as yet unknown, separation constant as A*, we then have

4.5)

’X | 2

dX | xx=0 4.6

0?2 (4.6)
2

Y _yy=o @.7)

dy

and the partial differential equation has been reduced to two ordinary differential equations.
Note that the designation of A* as a positive constant was not arbitrary. If a negative value
were selected or a value of A = 0 was chosen, it is readily shown (Problem 4.1) that it
would be impossible to obtain a solution that satisfies the prescribed boundary conditions.
The general solutions to Equations 4.6 and 4.7 are, respectively,

X = C,cosAx + C,sinAx

Y= C3€7)\y + C4e+)\’v
in which case the general form of the two-dimensional solution is

0 = (Cycos Ax + C,sin Ax)(Cye ™ + Cue™) (4.8)
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Applying the condition that (0, y) = 0, it is evident that C; = 0. In addition from the
requirement that 6(x, 0) = 0, we obtain

C,sin Ax(C; + C,) = 0

which may only be satisfied if C; = —C,. Although the requirement could also be satisfied
by having C, = 0, this would result in 6 (x, y) = 0, which does not satisfy the boundary
condition 6 (x, W) = 1. If we now invoke the requirement that 6 (L, y) = 0, we obtain

C,C,sinAL(e™ — e ™) =0

The only way in which this condition may be satisfied (and still have a nonzero solution) is
by requiring that A assume discrete values for which sin AL = 0. These values must then be
of the form

)\=% n=1,2,3,... (4.9)

where the integer n = 0 is precluded, since it implies 6 (x, y) = 0. The desired solution may
now be expressed as

6 = C,C, sin”Lﬂ ("™ — ™Iy (4.10)

Combining constants and acknowledging that the new constant may depend on n,
we obtain

0 s :C 1 w 1 h@
x,y) L, Sin 3 sin 2

where we have also used the fact that (¢"™"“ — ¢™"™) = 2 sinh (nary/L). In this form we
have really obtained an infinite number of solutions that satisfy the differential equation
and boundary conditions. However, since the problem is linear, a more general solution
may be obtained from a superposition of the form

0(x, y) = Zlcn sin " sinh "—Zy @.11)

To determine C, we now apply the remaining boundary condition, which is of the form

o, W)=1= 3¢, sin%sinh%" (4.12)
n=1

Although Equation 4.12 would seem to be an extremely complicated relation for evaluating
C,, a standard method is available. It involves writing an infinite series expansion in terms
of orthogonal functions. An infinite set of functions g,(x), g,(x), ... , g,(x), ... is said to be
orthogonal in the domaina = x = b if

f bgm(x)g,l(x) dx=0 m+*n (4.13)
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Many functions exhibit orthogonality, including the trigonometric functions sin (nmx/L) and
cos (nmx/L) for 0 = x = L. Their utility in the present problem rests with the fact that any
function f(x) may be expressed in terms of an infinite series of orthogonal functions

fx) = ;Angm (4.14)

The form of the coefficients A, in this series may be determined by multiplying each side of
the equation by g,,(x) and integrating between the limits a and b.

b b )
| g s = [ g0 S A 0 dn @15)

However, from Equation 4.13 it is evident that all but one of the terms on the right-hand
side of Equation 4.15 must be zero, leaving us with

b b
[ 108,00 dx =, | gaw

Hence, solving for A,,, and recognizing that this holds for any A, by switching m to n:

m>

b
[ 1,0 a

nzb—
J.gﬁMch

The properties of orthogonal functions may be used to solve Equation 4.12 for C, by for-
mulating an infinite series for the appropriate form of f(x). From Equation 4.14 it is evident
that we should choose f(x) = 1 and the orthogonal function g,(x) = sin (nmx/L). Substituting
into Equation 4.16 we obtain

A (4.16)

(—D" 41
n

(4.17)

which is simply the expansion of unity in a Fourier series. Comparing Equations 4.12 and
4.17 we obtain

_ 2T )

_— =1,2,3,... 4.18
nir sinh (nmWI/L) ( )

Substituting Equation 4.18 into Equation 4.11, we then obtain for the final solution

)"“ +1 .y sinh (vy/L)

2 <)
O(x,y) == sinh (nrW/L)
5y == 2 L sinh (nwW/L)

(4.19)
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y
f _1
w 2
0.7
0.5
0.25
6=0 6=0
6=0.1
v FIGURE 4.3  Isotherms and heat flow lines for
0 —X . . . .
0 9=0 L two-dimensional conduction in a rectangular plate.

Equation 4.19 is a convergent series, from which the value of # may be computed for any
x and y. Representative results are shown in the form of isotherms for a schematic of the rec-
tangular plate (Figure 4.3). The temperature 7 corresponding to a value of 6 may be obtained
from Equation 4.2, and components of the heat flux may be determined by using Equation 4.19
with Equation 2.6. The heat flux components determine the heat flow lines, which are shown in
the figure. We note that the temperature distribution is symmetric about x = L/2, with
dT/dx = 0 at that location. Hence, from Equation 2.6, we know the symmetry plane at x = L/2
is adiabatic and therefore is a heat flow line. However, note that the discontinuities prescribed
at the upper corners of the plate are physically untenable. In reality, large temperature gradients
could be maintained in proximity to the corners, but discontinuities could not exist.

Exact solutions have been obtained for a variety of other geometries and boundary
conditions, including cylindrical and spherical systems. Such solutions are presented in
specialized books on conduction heat transfer [1-5].

4.3 The Conduction Shape Factor and the Dimensionless
Conduction Heat Rate

In general, finding analytical solutions to the two- or three-dimensional heat equation is
time-consuming and, in many cases, not possible. Therefore, a different approach is often
taken. For example, in many instances, two- or three-dimensional conduction problems
may be rapidly solved by utilizing existing solutions to the heat diffusion equation. These
solutions are reported in terms of a shape factor S or a steady-state dimensionless conduc-
tion heat rate, g¥. The shape factor is defined such that

q = SKAT,_, (4.20)

where AT,_, is the temperature difference between boundaries, as shown in, for example,
Figure 4.2. It also follows that a two-dimensional conduction resistance may be expressed as

1
Rl,cond(2D) = ﬁ (421)
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Shape factors have been obtained analytically for numerous two- and three-dimensional
¥, systems, and results are summarized in Table 4.1 for some common configurations. Results
are also available for other configurations [6-9]. In cases 1 through 8 and case 11, two-
dimensional conduction is presumed to occur between the boundaries that are maintained
at uniform temperatures, with AT, _, = T, — T,. In case 9, three-dimensional conduction
exists in the corner region, while in case 10 conduction occurs between an isothermal disk
(T)) and a semi-infinite medium of uniform temperature (75) at locations well removed from
the disk. Shape factors may also be defined for one-dimensional geometries, and from the
results of Table 3.3, it follows that for plane, cylindrical, and spherical walls, respectively,
the shape factors are A/L, 2w L/In(ry/r,), and 4arr ry/(r, — ry).
Cases 12 through 15 are associated with conduction from objects held at an isothermal
temperature (7)) that are embedded within an infinite medium of uniform temperature (7)

Q/Shape factors for two-dimensional geometries may also be estimated with the graphical method that is
described in Section 4S.1.

TABLE 4.1 Conduction shape factors and dimensionless conduction heat rates for
selected systems.

(a) Shape factors [q = SK(T, — T,)]

System Schematic Restrictions Shape Factor

Case 1 - T
2D

Isothermal sphere buried in a semi-

& 4
infinite medium ﬁ}-'- z>Di2 1 — D/4z
T )
Case 2 T,
Horizontal isothermal cylinder of length L L>D %ILL
buried in a semi-infinite medium z ; cosh ™ (22/D)
3 L -~ L>D 2L
D 2> 3DP2 In (42/D)
Case 3 P
Vertical cylinder in a semi-infinite | K
medium ' 2L
] L
n |1} L=D In (4L/D)
| p
Case 4
D D
. . T, ¥1 Vs 2L
Conduction between two cylinders of z )
length L in infinite medium A /G-{T L> D, D,

212 2
' 2 L>w cosh-l( = Di — Ds
T DD,
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TABLE 4.1 Continued

System Schematic Restrictions Shape Factor

Case 5 - T o
Horizontal circular cylinder

of length L midway between i “ > D2 -
parallel planes of equal Iy —?\— - >
length and infinite width 2T < In (8z/7D)

Case 6 T2
Circular cylinder of length L D T
centered in a square solid of r'e w>D 1120%
equal length Q w L>w n (1.08 w/D)

s l
Case 7
Eccentric circular 27
cylinder of length L d D + & — 47
in a cylinder of D> cosh™ <Z>

L>D

equal length 2Dd
Case 8 Lo [—)
Conduction through the i P
edge of adjoining walls

' D> 5L 0.54D

tr
—| -— [,

Case 9

Conduction through corner of

three walls with a temperature L < length and

difference AT, _, across width of wall 0-15L
the walls
Case 10 l«— D —» ;
Disk of diameter D and temperature T _:l:ﬁ '
on a semi-infinite medium of thermal ! None 2D
conductivity k and temperature 7, « |
' \ T
[ 2
Case 11 L W_ . 27l
Square channel of length L / W : 0.785 In (W/w)
L —T
w 2wL
7, — >14
& w 0.930 In (W/w) — 0.050

— W L>W
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TABLE 4.1 Continued

(b) Dimensionless conduction heat rates [q = ¢ kA (T, — T,)/L,; L, = (A /4)"?]

System Schematic Active Area, A q¥
Case 12 “
Isothermal sphere of diameter D and p )
. . . . 77 A D 1
temperature 7' in an infinite medium L D
of temperature 7, T,
Case 13 T,
Infinitely thin, isothermal disk of diameter D S — 7D’ V2 0.900
and temperature T in an infinite medium D — 2 T v
of temperature 7, T,
Case 14
Infinitely thin rectangle of length L, l/ Sl
width w, and temperature 7 in an w i 2wL 0.932
infinite medium of temperature 7, 7 7,
Case 15 fDsy aiD g%
Cuboid shape of height d with a square 2D’ + 4Dd T o aoas
. . 0.1 0.943
footprint of width D and temperature T v i) 10 0956
in an infinite medium of temperature 7', a T, 20 0.961
10 1.111

at locations removed from the object. For these infinite medium cases, useful results may
be obtained by defining a characteristic length

L, = (A /Am)" (4.22)

where A, is the surface area of the object. Conduction heat transfer rates from the object to the
infinite medium may then be reported in terms of a dimensionless conduction heat rate [10]

i = qLJkA(T, — Ty) (4.23)

From Table 4.1, it is evident that the values of ¢¥, which have been obtained analytically and
numerically, are similar for a wide range of geometrical configurations. As a consequence of
this similarity, values of ¢¥ may be estimated for configurations that are similar to those for
which ¢¥ is known. For example, dimensionless conduction heat rates from cuboid shapes
(case 15) over the range 0.1 =d/D = 10 may be closely approximated by interpolating
the values of g% reported in Table 4.1. Additional procedures that may be exploited to
estimate values of ¢g¥ for other geometries are explained in [10]. Note that results for g¥ in
Table 4.15 may be converted to expressions for S listed in Table 4.1a. For example, the shape
factor of case 10 may be derived from the dimensionless conduction heat rate of case 13
(recognizing that the infinite medium can be viewed as two adjacent semi-infinite media).
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The shape factors and dimensionless conduction heat rates reported in Table 4.1 are
associated with objects that are held at uniform temperatures. For uniform heat flux condi-
tions, the object’s temperature is no longer uniform but varies spatially with the coolest tem-
peratures located near the periphery of the heated object. Hence, the temperature difference
that is used to define S or g% is replaced by a temperature difference involving the spatially
averaged surface temperature of the object (T, — T) or by the difference between the maxi-
mum surface temperature of the heated object and the far field temperature of the surround-
ing medium, (7 ..« — 7>). For the uniformly heated geometry of case 10 (a disk of diameter
D in contact with a semi-infinite medium of thermal conductivity k and temperature 7,), the
values of S are 37°D/16 and wD/2 for temperature differences based on the average and
maximum disk temperatures, respectively.

EXAMPLE 4.1

A metallic electrical wire of diameter d = 5 mm is to be coated with insulation of thermal
conductivity k = 0.35 W/m-K. It is expected that, for the typical installation, the coated
wire will be exposed to conditions for which the total coefficient associated with convec-
tion and radiation is # = 15 W/m?-K. To minimize the temperature rise of the wire due to
ohmic heating, the insulation thickness is specified so that the critical insulation radius is
achieved (see Example 3.5). During the wire coating process, however, the insulation
thickness sometimes varies around the periphery of the wire, resulting in eccentricity of the
wire relative to the coating. Determine the change in the thermal resistance of the insulation
due to an eccentricity that is 50% of the critical insulation thickness.

SOLUTION

Known: Wire diameter, convective conditions, and insulation thermal conductivity.

Find: Thermal resistance of the wire coating associated with peripheral variations in the
coating thickness.

Schematic:

d=5mm )

cr

o3

_—
L —
S —

Insulation, k

(a) Concentric wire (b) Eccentric wire

Assumptions:

1. Steady-state conditions.

2. Two-dimensional conduction.
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3. Constant properties.
4. Both the exterior and interior surfaces of the coating are at uniform temperatures.

Analysis:  From Example 3.5, the critical insulation radius is

_k_035W/m-K

or =0.023 m = 23 mm
h  15W/m?*-K
Therefore, the critical insulation thickness is

fo = 10— /2= 0,023 m — S0 = 0,021 m = 21 mm

The thermal resistance of the coating associated with the concentric wire may be evaluated
using Equation 3.33 and is

R In[r./(dI2)] _ In[0.023 m/(0.005 m/2)] _

_ 1. .
t,cond 20k 277(035 W/m - K) Om- KW

For the eccentric wire, the thermal resistance of the insulation may be evaluated using case 7
of Table 4.1, where the eccentricity is z = 0.5 X f,, = 0.5 X 0.021 m = 0.010 m

D’ +d* — 47
COSh_1 —
, | 2Dd

Rt,cond(ZD) = ﬁ = Yk
cosh-! (2 X 0.023 m)* + (0.005 m)* — 4(0.010 m)*
2 X (2 X 0.023 m) X 0.005 m
27 X 0.35 W/m-K

=091 m-K/W

Therefore, the reduction in the thermal resistance of the insulation is 0.10 m-K/W,
or 10%. <

Comments:

1. Reduction in the local insulation thickness leads to a smaller local thermal resistance of
the insulation. Conversely, locations associated with thicker coatings have increased
local thermal resistances. These effects offset each other, but not exactly; the maximum
resistance is associated with the concentric wire case. For this application, eccentricity of
the wire relative to the coating provides enhanced thermal performance relative to the
concentric wire case.

2. The interior surface of the coating will be at nearly uniform temperature if the thermal
conductivity of the wire is high relative to that of the insulation. Such is the case for
metallic wire. However, the exterior surface temperature of the coating will not be per-
fectly uniform due to the variation in the local insulation thickness.
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4.4 Finite-Difference Equations

As discussed in Sections 4.1 and 4.2, analytical methods may be used, in certain cases, to
effect exact mathematical solutions to steady, two-dimensional conduction problems.
These solutions have been generated for an assortment of simple geometries and boundary
conditions and are well documented in the literature [1-5]. However, more often than not,
two-dimensional problems involve geometries and/or boundary conditions that preclude
such solutions. In these cases, the best alternative is often one that uses a numerical tech-
nique such as the nite-difference, nite-element,  or boundary-element method. Another
strength of numerical methods is that they can be readily extended to three-dimensional
problems. Because of its ease of application, the finite-difference method is well suited for
an introductory treatment of numerical techniques.

4.4.1 The Nodal Network

In contrast to an analytical solution, which allows for temperature determination at any point
of interest in a medium, a numerical solution enables determination of the temperature at
only discrete points. The first step in any numerical analysis must therefore be to select these
points. Referring to Figure 4.4, this may be done by subdividing the medium of interest into
a number of small regions and assigning to each a reference point that is at its center.

T Ax [+
7 \ﬂ\

—

/ Ay m,n+1
{ yon oo T
'..-'\\ m, n
\ i I P m+1,n
X, m i |
/ m=1n| 1
m,n-1
(a)
T(x) m-—1
£ — Tm,n - Tm—l, n ‘
dx T
m=1/2,n Ax :
|
E Tm+1,n - Tm,n |
ox m+1/2,n Ax !
: m+1
o2 2
[ Ax—>Ax—>
ey
(b)

FiGUrE 4.4 Two-dimensional conduction. (@) Nodal network.
(b) Finite-difference approximation.
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The reference point is frequently termed a nodal point (or simply a node), and the aggregate
of points is termed a nodal network, grid, or mesh. The nodal points are designated by a num-
bering scheme that, for a two-dimensional system, may take the form shown in Figure 4.4a.
The x and y locations are designated by the m and n indices, respectively.

Each node represents a certain region, and its temperature is a measure of the average
temperature of the region. For example, the temperature of the node (m, n) of Figure 4.4a
may be viewed as the average temperature of the surrounding shaded area. The selection of
nodal points is rarely arbitrary, depending often on matters such as geometric convenience
and the desired accuracy. The numerical accuracy of the calculations depends strongly on
the number of designated nodal points. If this number is large (a ne mesh ), accurate solu-
tions can be obtained.

4.4.2 Finite-Difference Form of the Heat Equation

Determination of the temperature distribution numerically dictates that an appropriate conser-
vation equation be written for each of the nodal points of unknown temperature. The resulting
set of equations may then be solved simultaneously for the temperature at each node. For any
interior node of a two-dimensional system with no generation and uniform thermal conduc-
tivity, the exact form of the energy conservation requirement is given by the heat equation,
Equation 4.1. However, if the system is characterized in terms of a nodal network, it is neces-
sary to work with an approximate, or nite-difference, form of this equation.

A finite-difference equation that is suitable for the interior nodes of a two-dimensional
system may be inferred directly from Equation 4.1. Consider the second derivative, §*T/dx.
From Figure 4.4b, the value of this derivative at the (m, n) nodal point may be approximated as

T
ax*

_ aT/ax|m+l/2,n - (7T/(7x|m71/2,n

mn AX

(4.24)

The temperature gradients may in turn be expressed as a function of the nodal tempera-
tures. That is,

Tm n - Tm n
N (4.25)
X |t 12 Ax
Tmn - Tm* n
- - (4.26)
x m—1/2,n A-x
Substituting Equations 4.25 and 4.26 into 4.24, we obtain
2 Tm n + Tm* n - 2Tmn
I Tt T i T .27)
0x~ |mn (AX)
Proceeding in a similar fashion, it is readily shown that
ﬂ - 5T/f7)’|m,n+1/2 - 5T/f7)’|m,n—1/2
(9_)72 mn Ay
Tmn + ]1111 n— - 2Tm n
~ ol | Cmn ’ (4.28)

(Ay)?
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Using a network for which Ax = Ay and substituting Equations 4.27 and 4.28 into
Equation 4.1, we obtain

Tm,n+l + Tm,n*l + Tm+1,n + Tm*l,n - 4Tmn = O (429)

Hence for the (m, n) node, the heat equation, which is an exact differential equation,
is reduced to an approximate algebraic equation. This approximate, nite-difference form of
the heat equation may be applied to any interior node that is equidistant from its four neigh-
boring nodes. It requires simply that the temperature of an interior node be equal to the
average of the temperatures of the four neighboring nodes.

4.4.3 The Energy Balance Method

In many cases, it is desirable to develop the finite-difference equations by an alternative
method called the energy balance method. As will become evident, this approach enables
one to analyze many different phenomena such as problems involving multiple materials,
embedded heat sources, or exposed surfaces that do not align with an axis of the coordinate
system. In the energy balance method, the finite-difference equation for a node is obtained
by applying conservation of energy to a control volume about the nodal region. Since the
actual direction of heat flow (into or out of the node) is often unknown, it is convenient to
formulate the energy balance by assuming that all the heat flow is into the node. Such a
condition is, of course, impossible, but if the rate equations are expressed in a manner con-
sistent with this assumption, the correct form of the finite-difference equation is obtained.
For steady-state conditions with generation, the appropriate form of Equation 1.12c¢ is then

E,+E,=0 (4.30)

Consider applying Equation 4.30 to a control volume about the interior node (m, n) of
Figure 4.5. For two-dimensional conditions, energy exchange is influenced by conduction
between (m, n) and its four adjoining nodes, as well as by generation. Hence Equation 4.30
reduces to

4
Zlq(i)%(m,n) + g(Ax-Ay-1)=0

’<fo

m,n+1
[ ]

e

Ay

e

m-1,n

(] <—@®
m, n I m+1,n
1

s

m,n—1

PN

FIGURE 4.5 Conduction to an interior node from its

e Ax —> adjoining nodes.
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where i refers to the neighboring nodes, ¢; — ., is the conduction rate between nodes, and
unit depth is assumed. To evaluate the conduction rate terms, we assume that conduction
transfer occurs exclusively through lanes that are oriented in either the x- or y-direction. Sim-
plified forms of Fourier’s law may therefore be used. For example, the rate at which energy is
transferred by conduction from node (m — 1, n) to (m, n) may be expressed as

n_ Tm,n

Tm—l,
q(m*l,n)ﬁ(m,n) = k(Ay . 1) Ax

(4.31)

The quantity (Ay - 1) is the heat transfer area, and the term (7,,_,,, — 7,,,,)/Ax is the finite-
difference approximation to the temperature gradient at the boundary between the two
nodes. The remaining conduction rates may be expressed as

Tm+l,n - Tm,n

n+1.)— () = k(Ay 1) T (432)
Tm,n+l - Tm,n

Dinn+1)— mm = k(Ax 1) T (4.33)
Tm,n*l - Tm,n

q(m,n—l) — (m,n) = k(Ax . l) T (434)

Note that, in evaluating each conduction rate, we have subtracted the temperature of the (m, n)
node from the temperature of its adjoining node. This convention is necessitated by the
assumption of heat flow into (m, n) and is consistent with the direction of the arrows shown
in Figure 4.5. Substituting Equations 4.31 through 4.34 into the energy balance and remem-
bering that Ax = Ay, it follows that the finite-difference equation for an interior node with
generation is

q(Ax)*

T AT, =0 (4.35)

m

n+1 + Tm,n*l + Tm+l,n + Tm*l,n +

If there is no internally distributed source of energy (¢ = 0), this expression reduces to
Equation 4.29.

It is important to note that a finite-difference equation is needed for each nodal point at
which the temperature is unknown. However, it is not always possible to classify all such
points as interior and hence to use Equation 4.29 or 4.35. For example, the temperature
may be unknown at an insulated surface or at a surface that is exposed to convective condi-
tions. For points on such surfaces, the finite-difference equation must be obtained by apply-
ing the energy balance method.

To further illustrate this method, consider the node corresponding to the internal corner
of Figure 4.6. This node represents the three-quarter shaded section and exchanges energy
by convection with an adjoining fluid at 7.,. Conduction to the nodal region (m, n) occurs
along four different lanes from neighboring nodes in the solid. The conduction heat rates
G.ond May be expressed as

n Tm,n

Tm—l,
9n—1.m—mn) — k(Ay-1) Ax

(4.36)
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FIGURE 4.6  Formulation of the finite-difference equation for an

~—Ax— internal corner of a solid with surface convection.
Tons1 = Thn
Qonp+ 1) mmy = k(Ax = 1) — Ay . (4.37)
Gm+1.m—0mn) — k<A2y : 1) W (4.38)
Gimn—1)—mn) — k<A2x : 1) TmnlA;Tmn (4.39)

Note that the areas for conduction from nodal regions (m — 1, n) and (m, n + 1) are pro-
portional to Ay and Ax, respectively, whereas conduction from (m + 1, n) and (m, n — 1)
occurs along lanes of width Ay/2 and Ax/2, respectively.

Conditions in the nodal region (m, n) are also influenced by convective exchange with
the fluid, and this exchange may be viewed as occurring along half-lanes in the x- and y-
directions. The total convection rate ¢,,,, may be expressed as

A
q(m)—>(m,n) = h <A2x . 1>(T00 - Tm,n) + h’ (2:)) : 1>(T00 - Tm,n) (440)

Implicit in this expression is the assumption that the exposed surfaces of the corner are at a
uniform temperature corresponding to the nodal temperature 7,,,. This assumption is con-
sistent with the concept that the entire nodal region is characterized by a single tempera-
ture, which represents an average of the actual temperature distribution in the region. In the
absence of transient, three-dimensional, and generation effects, conservation of energy,
Equation 4.30, requires that the sum of Equations 4.36 through 4.40 be zero. Summing
these equations and rearranging, we therefore obtain

T+ s 3 T+ T + 25T (3 + ’“Ax) T,=0  (441)

k m,n

where again the mesh is such that Ax = Ay.
Nodal energy balance equations pertinent to several common geometries for situations
where there is no internal energy generation are presented in Table 4.2.
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TABLE 4.2 Summary of nodal finite-difference equations

Conguration Finite-Difference Equation for Ax = Ay

m,n+1

r
I
1
m-1,n 1 | m+1,n
I
L

- ---I Tm,n+1 + Tm,nfl + Tm+],n + Tm*l,n - 4 = 0 (429)

mn

R Case 1. Interior node

[e— Ax—»
mn+1
2(Tm—l,n + Tm,n+1) + (Tm+1,n + Tm,n—l)
R .
1
m-1,n ! m, n! m+1,n
¥ % w2t Ay o340 @41
1 1 k k ’
Ay I | Tw, h
i m,n—1 Case 2. Node at an internal corner with convection
? m,n+1
Ay r==—nh
1 1 a
¢ 1, el T, h (2Tm*1n+Tmn+l +Tmnl)+2hAxTw2<hAx+2> Tmn:O (442)
T - ’ ’ ’ k k ’
m-1,n | 1
[
mn-1 Case 3. Node at a plane surface with convection
le— A x—>
m-ln___ ol h Ax h Ax
T (oo (Tm,,,l+Tm,1n)+2TTx—2 T+1 T,,=0 (4.43)
i, : . .
Ay = al
¢ myn—1 . .
A Case 4. Node at an external corner with convection
le— A x—>
T m,n+1
-—
Ay r - ":
1 | — 2q" Ax
l : e : q" (2Tm71n + Tmn+l + Tmnfl) + 1 _4Tmn =0 (4’44)b
m-1,n ] |— ’ ' ' k '
! 1
S |
. Case 5. Node at a plane surface with uniform heat flux
m,n—

e ax—

“>To obtain the finite-difference equation for an adiabatic surface (or surface of symmetry), simply set % or ¢" equal to zero.

EXAMPLE 4..2

Using the energy balance method, derive the finite-difference equation for the (m, n) nodal
point located on a plane, insulated surface of a medium with uniform heat generation.
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SOLUTION

Known: Network of nodal points adjoining an insulated surface.

Find: Finite-difference equation for the surface nodal point.

Schematic:
) m,n+1
qf :,-\%Insulated surface
kg r====- 1
\:—. s T
1|
: I -m, n Ay = Ax
, m-1,ne —>, o <«— Ay Unit depth (normal
i ay | a3 to paper)
1 | I l
! 1~
X, m ‘IE
b m,n—1
S
Assumptions:

1. Steady-state conditions.

2. Two-dimensional conduction.

3. Constant properties.

4. Uniform internal heat generation.

Analysis:  Applying the energy conservation requirement, Equation 4.30, to the control
surface about the region (Ax/2-Ay-1) associated with the (m, n) node, it follows that, with
volumetric heat generation at a rate ¢,

Ax
q1+q2+q3+q4+q<2'Ay'l>=0

where
= k(Ay-1 Tm*l,n - Tm,n
q; = k(Ay-1) A
Ax Tm,n—l - Tm,n
= k =-. 1 s e
q> < ) ) Ay
;=0
Ax Tm,n+l - Tm,n
= k =. 1 B e
94 < > > Ay
Substituting into the energy balance and dividing by k72, it follows that
Ax-A
2Tm*l,n + Tm,nfl + Tm,n+1 - 4Tm,n + % =0 <
Comments:

1. The same result could be obtained by using the symmetry condition, 7., =
T,

n—1.» With the finite-difference equation (Equation 4.35) for an interior nodal point.
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If ¢ =0, the desired result could also be obtained by setting # = 0 in Equation 4.42
(Table 4.2).

2. As an application of the foregoing finite-difference equation, consider the following
two-dimensional system within which thermal energy is uniformly generated at an
unknown rate g. The thermal conductivity of the solid is known, as are convection
conditions at one of the surfaces. In addition, temperatures have been measured at
locations corresponding to the nodal points of a finite-difference mesh.

7 T,=2359°C  T,=227.6°C
‘T T,=230.9°C  T,=220.1°C
T,=2224°C  T.=200.0°C

s

|---
1

L

B

T,e
h=50W/m*-K k=1Wm-K
”‘[ H Ax =10 mm Ay =10 mm
T TJ‘FAX o
T, h

The generation rate can be determined by applying the finite-difference equation to

node c.
Ax-A
o1, + T, + T, — 41, + 1A 2Y) Xk Y _g
o q(0.01 m)?
2 X 227.6 +222.4 + 2359 — 4 X 230. + =
( 6 359 30.9)°C TWim-K

g =1.01Xx10°W/m’

From the prescribed thermal conditions and knowledge of ¢, we can also determine
whether the conservation of energy requirement is satisfied for node e. Applying an
energy balance to a control volume about this node, it follows that
Gt aptagtaqtqglAx/i2-Ay2-1)=0
Td B Te
Ax

k(Ax/2-1) TCA_yTe + 0+ (A2 1)(T,, — T,) + k(Ay/2- 1)

+ g(Ax/2-Ay/2-1) =0

riAxH

ST
| .

i "

1 If= g,
— | l—-
& I

ny
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If the energy balance is satisfied, the left-hand side of this equation will be identically
equal to zero. Substituting values, we obtain

(230.9 — 222.4)°C
0.010 m

+ 0 + 50 W/m? - K(0.005 m?) (200 — 222.4)°C

(220.1 — 222.4)°C

1 W/m - K(0.005 m?)

+ 1 W/m - K(0.005 m?) + 1.01 X 10° W/m*(0.005)* m* = 0(?)

0.010 m
4250 W +0—5.600W — 1.150 W + 2.525 W = 0(?)
0.025W =0

The inability to precisely satisfy the energy balance is attributable to temperature mea-
surement errors, the approximations employed in developing the finite-difference
equations, and the use of a relatively coarse mesh.

F

It is useful to note that heat rates between adjoining nodes may also be formulated in terms
of the corresponding thermal resistances. Referring, for example, to Figure 4.6, the rate of
heat transfer by conduction from node (m — 1, n) to (m, n) may be expressed as

Tm—l,n - Tm,n Tm—l,n - ]:n,il
A= = Ry Ale(@y D)

yielding a result that is equivalent to that of Equation 4.36. Similarly, the rate of heat trans-
fer by convection to (m, n) may be expressed as

T.—T,

- - T.—T
q(x) — (m,n) — R

mn

eonv {AI(AX/2)+ 1 + (Ay/2)-1]} 7!

which is equivalent to Equation 4.40.

As an example of the utility of resistance concepts, consider an interface that separates
two dissimilar materials and is characterized by a thermal contact resistance R;, (Figure 4.7).
The rate of heat transfer from node (m, n) to (m, n — 1) may be expressed as

Tm,n - Tm,n*l
q(m,n) — (myn—1) = R (445)
tot
where, for a unit depth,
A2 R}, Ay/2 (4.46)
O ka(Axt 1) Axe 1 kg(Ax-1) ’
Ax
4 jm—————- i
L
I I
Ay : (m,’,") : Matirial A
I I A
I I
“‘ ll- ------ -'l' RI”('
] : '
1 _
Ay @ D) : Material B
L ' I kg
L : Ficure 4.7  Conduction between adjoining, dissimilar materials

with an interface contact resistance.



250

Chapter 4 m Two-Dimensional, Steady-State Conduction

4.5 Solving the Finite-Difference Equations

Once the nodal network has been established and an appropriate finite-difference equation
has been written for each node, the temperature distribution may be determined. The prob-
lem reduces to one of solving a system of linear, algebraic equations. In this section, we for-
mulate the system of linear, algebraic equations as a matrix equation and briefly discuss its
solution by the matrix inversion method. We also present some considerations for verifying
the accuracy of the solution.

4.5.1 Formulation as a Matrix Equation

Consider a system of N finite-difference equations corresponding to N unknown tempera-
tures. Identifying the nodes by a single integer subscript, rather than by the double sub-
script (m, n), the procedure for performing a matrix inversion begins by expressing the
equations as

a]]Tl + a12T2 + a13T3 + -+ alNTN= Cl
an T, + apT, + ayTy+ -+ + anTy = C,

an T+ ay,T, + a3 Ty + -+ + ayyTy = Cy 4.47)

where the quantities a,;, a5, ..., Cj, ... are known coefficients and constants involving
quantities such as Ax, k, h, and T,. Using matrix notation, these equations may be
expressed as

[A][T] = [C] (4.48)
where
apn  dp aN T, G
ay Ay Iy T, G
A= -, T= s C=
ayy dyy 77 dpy Ty Cy

The coefcient matrix [A] is square (N X N), and its elements are designated by a double
subscript notation, for which the first and second subscripts refer to rows and columns,
respectively. The matrices [7] and [C] have a single column and are known as column
vectors. Typically, they are termed the solution and right-hand side vectors, respectively. If
the matrix multiplication implied by the left-hand side of Equation 4.48 is performed,
Equations 4.47 are obtained.

Numerous mathematical methods are available for solving systems of linear, alge-
braic equations [11, 12], and many computational software programs have the built-in
capability to solve Equation 4.48 for the solution vector [7]. For small matrices, the
solution can be found using a programmable calculator or by hand. One method suitable
for hand or computer calculation is the Gauss—Seidel method, which is presented in
Appendix D.
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4.5.2 Verifying the Accuracy of the Solution

It is good practice to verify that a numerical solution has been correctly formulated by
performing an energy balance on a control surface surrounding all nodal regions whose
temperatures have been evaluated. The temperatures should be substituted into the energy
balance equation, and if the balance is not satisfied to a high degree of precision, the finite-
difference equations should be checked for errors.

Even when the finite-difference equations have been properly formulated and solved, the
results may still represent a coarse approximation to the actual temperature field. This behav-
ior is a consequence of the finite spacings (Ax, Ay) between nodes and of finite-difference
approximations, such as k(Ay-1)(7,-,, — T,.,)/Ax, to Fourier's law of conduction,
—k(dy*1)dT/dx. The finite-difference approximations become more accurate as the nodal
network is refined (Ax and Ay are reduced). Hence, if accurate results are desired, grid studies
should be performed, whereby results obtained for a fine grid are compared with those
obtained for a coarse grid. One could, for example, reduce Ax and Ay by a factor of 2, thereby
increasing the number of nodes and finite-difference equations by a factor of 4. If the agree-
ment is unsatisfactory, further grid refinements could be made until the computed tempera-
tures no longer depend significantly on the choice of Ax and Ay. Such grid-independent
results would provide an accurate solution to the physical problem.

Another option for validating a numerical solution involves comparing results with those
obtained from an exact solution. For example, a finite-difference solution of the physical
problem described in Figure 4.2 could be compared with the exact solution given by Equation
4.19. However, this option is limited by the fact that we seldom seek numerical solutions to
problems for which there exist exact solutions. Nevertheless, if we seek a numerical solution
to a complex problem for which there is no exact solution, it is often useful to test our finite-
difference procedures by applying them to a simpler version of the problem.

iy | ExAmMPLE 4.3

A major objective in advancing gas turbine engine technologies is to increase the temperature
limit associated with operation of the gas turbine blades. This limit determines the permissible
turbine gas inlet temperature, which, in turn, strongly influences overall system performance.
In addition to fabricating turbine blades from special, high-temperature, high-strength superal-
loys, it is common to use internal cooling by machining flow channels within the blades and
routing air through the channels. We wish to assess the effect of such a scheme by approximat-
ing the blade as a rectangular solid in which rectangular channels are machined. The blade,
which has a thermal conductivity of kK = 25 W/m-K, is 6 mm thick, and each channel has a
2 mm X 6 mm rectangular cross section, with a 4-mm spacing between adjoining channels.

- —> 4
Combustion T h Air channel
gases o0 o T. ., h

e G A

T 2 mm
l b 6 mm |

Combustion T
gases o0’

Turbine blade, k&
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Under operating conditions for which 4, = 1000 W/m?-K, T.,=1700K, h; = 200 W/m?-K,
and T,,; = 400 K, determine the temperature field in the turbine blade and the rate of heat
transfer per unit length to the channel. At what location is the temperature a maximum?

SOLUTION

Known: Dimensions and operating conditions for a gas turbine blade with embedded
channels.

Find: Temperature field in the blade, including a location of maximum temperature. Rate
of heat transfer per unit length to the channel.

Schematic:

T.ohy
1] 2 3 4 5 6] B
v | T T hd
| 1 I i
_—— I ---IAy:lmm
1 I 1 .
7, 18 I 9 100 11 1127 |
Symmetry | ! | L
h i e bkt i L — <" Symmetr
adiabat w ] | : " 'I ymmetry
13 14, 115 1161 117/ 118, adiabat
[ | !
- i
| 120 21 Lok
o) 120, [ 21
Ax =
™ 1 mm Symmetry

adiabat

Assumptions:
1. Steady-state, two-dimensional conduction.
2. Constant properties.

Analysis:  Adopting a grid space of Ax = Ay = 1 mm and identifying the three lines of
symmetry, the foregoing nodal network is constructed. The corresponding finite-difference
equations may be obtained by applying the energy balance method to nodes 1, 6, 18, 19,
and 21 and by using the results of Table 4.2 for the remaining nodes.

Heat transfer to node 1 occurs by conduction from nodes 2 and 7, as well as by convec-
tion from the outer fluid. Since there is no heat transfer from the region beyond the symme-
try adiabat, application of an energy balance to the one-quarter section associated with node
1 yields a finite-difference equation of the form

h,Ax T - _ hAx
k)t k

Node 1: T,+T,— (2 + T.,

A similar result may be obtained for nodal region 6, which is characterized by equivalent
surface conditions (2 conduction, 1 convection, 1 adiabatic). Nodes 2 to 5 correspond to
case 3 of Table 4.2, and choosing node 3 as an example, it follows that

h, Ax 2, A
Node 3: T2+T4+2T9—2< . - ;{x

+ 2>T3 = T.,



4.5 wm Solving the Finite-Difference Equations 253

Nodes 7, 12, 13, and 20 correspond to case 5 of Table 4.2, with ¢” = 0, and choosing
node 12 as an example, it follows that

Node 12: T6+2T11 +T18_4T12:O

Nodes 8 to 11 and 14 are interior nodes (case 1), in which case the finite-difference equa-
tion for node 8 is

NOdeS: T2+T7+T9+T14_4T8=0
Node 15 is an internal corner (case 2) for which

h; Ax h; Ax
Node 15: 2Ty + 2T,y + Ty + T, — 2<3 + ’k>T15 =-2 ’k T..,

while nodes 16 and 17 are situated on a plane surface with convection (case 3):

h; Ax

. 2h,A
Node 16: 2T,y + Tys + Ty; — 2<k + 2>T16 .

k

Tac,i

In each case, heat transfer to nodal regions 18 and 21 is characterized by conduction
from two adjoining nodes and convection from the internal flow, with no heat transfer
occurring from an adjoining adiabat. Performing an energy balance for nodal region 18, it
follows that

Toc

i
>

h; Ax h; Ax
Node 18: T12+T17—<2+ : >T18=—’

The last special case corresponds to nodal region 19, which has two adiabatic surfaces and
experiences heat transfer by conduction across the other two surfaces.

NOde 19: Tl3 + T20 - 2T19 - 0

The equations for nodes 1 through 21 may be solved simultaneously using /HT, another
commercial code, or a handheld calculator. The following results are obtained:

T, T, T, T, T, T,
1526.0 K 15253 K 1523.6K 1521.9K 1520.8 K 1520.5 K
T, T, T, Ty T, Ty,
1519.7 K 1518.8 K 1516.5 K 15145K 15133 K 1512.9K
T13 T14 T15 Tlﬁ T17 T18
1515.1 K 1513.7K 1509.2 K 1506.4 K 1505.0 K 1504.5 K

Tl9 TZO T21

15134 K 1511.7K 1506.0 K
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The temperature field may also be represented in the form of isotherms, and four such lines of
constant temperature are shown schematically. Also shown are heat flux lines that have been
carefully drawn so that they are everywhere perpendicular to the isotherms and coincident with
the symmetry adiabat. The surfaces that are exposed to the combustion gases and air are not
isothermal, and therefore the heat flow lines are not perpendicular to these boundaries.

E

217 |

1517.4 ——[
‘L

1513.1 g()j/glr)r:tztry

As expected, the maximum temperature exists at the location farthest removed from the
coolant, which corresponds to node 1. Temperatures along the surface of the turbine blade
exposed to the combustion gases are of particular interest. The finite-difference predictions
are plotted below (with straight lines connecting the nodal temperatures).

1528

1526

T (K)

1524

1522

1520
0 1 2 3 4 5

x (mm)
The rate of heat transfer per unit length of channel may be calculated in two ways.

Based on heat transfer from the blade to the air, it is

q' = Ah[(Ay12)(Ty, — Tw ) + (Ay2 + Ax12)(Ts — T )

+ (Ax)(Tm - Too,i) + AX(TW - Too,i) + (AX/Z)(Tls - Too,i)]
Alternatively, based on heat transfer from the combustion gases to the blade, it is
q' =4 (Ax2)(Ts, — Ty) + (AX)(T.., = Ty) + (Ax)(T>,, — T)
+ (AT, = Ty) + (AT, = T5) + (AX2)(T, = T)]
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where the factor of 4 originates from the symmetry conditions. In both cases, we obtain

q' = 3540.6 W/m

Comments:

<

1. In matrix notation, following Equation 4.48, the equations for nodes 1 through 21 are

of the form [A][T] = [C], where

-a 1 0 o o0 1 0 0O 0O O o o o o0 o O o o0 0 O -f
!l b 1.0 0 0O O 2 0 O O O 0O O o O O O O 0 O =2f
o 1 -» 1 0 0O 0O 0O 2 0 O O O O O O O O 0 o0 O =2f
o o0 1t -» 1 0 0 O O 2 0 O 0O O O O O 0O O 0 O =2f
o o0 o 1 -» 1 0 O 0O O 2 0 0 0O O O O 0O O 0 O =2f
o o0 o0 o0 1 - 0 0 OO0 o 1 0 O O O O O O 0 O -f
!l 0 0 0 0O 04 2 000 01 0 O0 0O O O0 0 0 O 0
o 1 o o o o0 1 -4 1 0 0 0 0 1 0 O O O O O0 O 0
o o0 1 o o 0 o0 1 -4 1 0 0 0 01 0 0 O O O O 0
o o0 o0 1 o0 0O o0 o0 1-4 1 00 0O 1 0 0 0 0 O 0

[A]=f 0O O O 0O 1 0 060 0O 1 -4 1 00O O0O 1 0 0 0O [C]=]0

o o o0 o0 o0 1 0 0O O o0 2 -4 0 0O O O O 1 0 0 O 0
o o0 o0 o o o0 1 o0 O O o o0-4 2 0 O O 0O 1 0 O 0
o o0 o0 o0 o0 0 o0 1 0 0 o0 O 1 -4 1 0 O 0O O 1 O 0
o 0 o0 o0 o0 0O o o0 2 0 0 0 0 2 = 1 0 0 0 0 1 —2g
o o o0 o o0 o0 o0 o o0 2 0 0 0 0 1 - 1 0 0 0 O -2g
o o o0 o o0 o0 o0 o o0 o 2 0 0O O O I -4 1 0 0 O —2g
o 0 o0 o0 o0 0O o o0 o o o 1 0 O O O I - O 0 O -8
o o0 o0 o0 o0 0O o o0 o0 o0 o0 o0 1 0 O O O O0-=2 10 0
o o o0 o o o0 o0 o o o o o o 2 0 0 0 0 1 -4 1 0

/!0 0 606 06 0 0O 00 0 0 0O 0 0 0 1 0 0 0 0 1 - -g

With h,Ax/k = 0.04 and h,Ax/k = 0.008, the following coefficients in the equations
can be calculated: a = 2.04, b = 4.08, ¢ = 6.016, d = 4.016, e = 2.008, f = 68, and
g = 3.2. By framing the equations as a matrix equation, standard tools for solving

matrix equations may be used.

2. To ensure that no errors have been made in formulating and solving the finite-differ-
ence equations, the calculated temperatures should be used to verify that conservation

of energy is satisfied for a control surface surrounding all nodal regions. This check

has already been performed, since it was shown that the heat transfer rate from the

combustion gases to the blade is equal to that from the blade to the air.

3. The accuracy of the finite-difference solution may be improved by refining the grid. If,
for example, we halve the grid spacing (Ax = Ay = 0.5 mm), thereby increasing the

number of unknown nodal temperatures to 65, we obtain the following results for

selected temperatures and the heat rate:

T,=15259K, T,=15205K, Ts=1509.2K,
Ty = 1504.5K, T, =1513.5K, T, = 1505.7K,
¢ = 3539.9 W/m

Agreement between the two sets of results is excellent. Of course, use of the finer

mesh increases setup and computation time, and in many cases the results obtained
from a coarse grid are satisfactory. Selection of the appropriate grid is a judgment

that the engineer must make.
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4. In the gas turbine industry, there is great interest in adopting measures that reduce blade
temperatures. Such measures could include use of a different alloy of larger thermal con-
ductivity and/or increasing coolant flow through the channel, thereby increasing #;.
Using the finite-difference solution with Ax = Ay = 1 mm, the following results are
obtained for parametric variations of k and /;:

k (W/m-K) h; (W/m?-K) T, (K) q' (W/m)
25 200 1526.0 3540.6
50 200 1523.4 3563.3
25 1000 1154.5 11,095.5
50 1000 1138.9 11,320.7

Why do increases in k and /; reduce temperature in the blade? Why is the effect of the
change in h; more significant than that of k?

5. Note that, because the exterior surface of the blade is at an extremely high tempera-
ture, radiation losses to its surroundings may be significant. In the finite-difference
analysis, such effects could be considered by linearizing the radiation rate equation
(see Equations 1.8 and 1.9) and treating radiation in the same manner as convection.
However, because the radiation coefficient £, depends on the surface temperature, an
iterative finite-difference solution would be necessary to ensure that the resulting sur-
face temperatures correspond to the temperatures at which 4, is evaluated at each
nodal point.

6. See Example 4.3 in [HT. This problem can also be solved using Tools, Finite-
Difference Equations in the Advanced section of IHT.

7. A second software package accompanying this text, Finite-Element Heat Transfer
(FEHT), may also be used to solve one- and two-dimensional forms of the heat equa-
tion. This example is provided as a solved model in FEHT and may be accessed
through Examples on the Toolbar.

4.6 Summary

The primary objective of this chapter was to develop an appreciation for the nature of a two-
dimensional conduction problem and the methods that are available for its solution. When
confronted with a two-dimensional problem, one should first determine whether an exact
solution is known. This may be done by examining some of the excellent references in which
exact solutions to the heat equation are obtained [1-5]. One may also want to determine
whether the shape factor or dimensionless conduction heat rate is known for the system of
interest [6—10]. However, often, conditions are such that the use of a shape factor, dimension-
less conduction heat rate, or an exact solution is not possible, and it is necessary to use a
finite-difference or finite-element solution. You should therefore appreciate the inherent
nature of the discretization process and know how to formulate and solve the finite-difference
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equations for the discrete points of a nodal network. You may test your understanding of
related concepts by addressing the following questions.

* What is an isotherm? What is a heat ow line ? How are the two lines related geometrically?
* What is an adiabat? How is it related to a line of symmetry? How is it intersected by an

isotherm?

* What parameters characterize the effect of geometry on the relationship between the heat
rate and the overall temperature difference for steady conduction in a two-dimensional
system? How are these parameters related to the conduction resistance?

* What is represented by the temperature of a nodal point, and how does the accuracy of a
nodal temperature depend on prescription of the nodal network?
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Exact Solutions

4.1 In the method of separation of variables (Section 4.2)

4.2

for two-dimensional, steady-state conduction, the sepa-
ration constant \> in Equations 4.6 and 4.7 must be a
positive constant. Show that a negative or zero value of
\? will result in solutions that cannot satisfy the pre-
scribed boundary conditions.

A two-dimensional rectangular plate is subjected to pre-
scribed boundary conditions. Using the results of the exact
solution for the heat equation presented in Section 4.2,
calculate the temperature at the midpoint (1, 0.5) by con-
sidering the first five nonzero terms of the infinite series
that must be evaluated. Assess the error resulting from
using only the first three terms of the infinite series. Plot
the temperature distributions 7(x, 0.5) and 7(1.0, y).

- T, = 50°C
x (m)

LTl = 50°C

4.3 Consider the two-dimensional rectangular plate of

Problem 4.2 having a thermal conductivity of 50 W/m-K.
Beginning with the exact solution for the temperature
distribution, derive an expression for the heat transfer
rate per unit thickness from the plate along the lower
surface (0 =x =2, y=0). Evaluate the heat rate
considering the first five nonzero terms of the infinite
series.
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A two-dimensional rectangular plate is subjected to the
boundary conditions shown. Derive an expression for
the steady-state temperature distribution 7(x, y).

A two-dimensional rectangular plate is subjected to
prescribed temperature boundary conditions on three
sides and a uniform heat flux info the plate at the top
surface. Using the general approach of Section 4.2,
derive an expression for the temperature distribution in
the plate.

0 —>x
0 L L
Tl

Shape Factors and Dimensionless
Conduction Heat Rates

4.6

4.7

Using the thermal resistance relations developed in
Chapter 3, determine shape factor expressions for the
following geometries:

(a) Plane wall, cylindrical shell, and spherical shell.

(b) Isothermal sphere of diameter D buried in an infi-
nite medium.

Free convection heat transfer is sometimes quantified by
writing Equation 4.20 as g ., = Sk AT)_», Where ke is
an effective thermal conductivity. The ratio k. /k is greater
than unity because of fluid motion driven by buoyancy
forces, as represented by the dashed streamlines.

8

An experiment for the configuration shown yields a
heat transfer rate per unit length of g.,,, = 110 W/m for
surface temperatures of 7, =53 C and 7, =15 C,
respectively. For inner and outer cylinders of diameters
d =20mm and D = 60 mm, and an eccentricity factor
of z =10 mm, determine the value of k.. The actual
thermal conductivity of the fluid is kK = 0.255 W/m-K.

4.8 Consider Problem 4.5 for the case where the plate is of

square cross section, W = L.

(a) Derive an expression for the shape factor, S,,,, asso-
ciated with the maximum top surface temperature,
such that g = S,,.x kK (T x — 1) Where T, ., is the
maximum temperature along y = W.

(b) Derive an expression for the shape factor, S,
associated with the average top surface tempera-
ture, g = S.dvgk(fz — T,) where T, is the average
temperature along y = W.

(c) Evaluate the shape factors that can be used to
determine the maximum and average temperatures
along y = W. Evaluate the maximum and average
temperatures for 7, =0 C, L= W =10mm, k =
20 W/m*+K, and ¢’ = 1000 W/m?.

4.9 Radioactive wastes are temporarily stored in a spheri-

cal container, the center of which is buried a distance
of 10 m below the earth’s surface. The outside diame-
ter of the container is 2m, and 500 W of heat are
released as a result of radioactive decay. If the soil
surface temperature is 20 C, what is the outside sur-
face temperature of the container under steady-state
conditions? On a sketch of the soil-container system
drawn to scale, show representative isotherms and heat
flow lines in the soil.

4.10 Based on the dimensionless conduction heat rates for

cases 12—15 in Table 4.1b, find shape factors for the fol-
lowing objects having temperature 7}, located at the
surface of a semi-infinite medium having temperature 7.
The surface of the semi-infinite medium is adiabatic.

(a) A buried hemisphere, flush with the surface.

(b) A disk on the surface. Compare your result to Table
4.1a, case 10.

(c) A square on the surface.
(d) A buried cube, flush with the surface.

LD, L " b,
e R
7, T T,

T T,
(a) (b) and (c) (d)

4.11 Determine the heat transfer rate between two particles of

diameter D = 100 wm and temperatures 7, = 300.1 K
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and 7, = 299.9 K, respectively. The particles are in con-
tact and are surrounded by air.

Air D

T T,

4.12 A two-dimensional object is subjected to isothermal

conditions at its left and right surfaces, as shown in the
schematic. Both diagonal surfaces are adiabatic and the
depth of the object is L = 100 mm.

7/
y ,’
Ve
7
T/
0=n/2f—>
N x T,
\\
\\ %TZ
AN
le— %
e, N

(a) Determine the two-dimensional shape factor for the
object fora = 10 mm, b = 12 mm.

(b) Determine the two-dimensional shape factor for the

object fora = 10 mm, b = 15 mm.

(c) Use the alternative conduction analysis of Section

3.2 to estimate the shape factor for parts (a) and

(b). Compare the values of the approximate shape

factors of the alternative conduction analysis to the

two-dimensional shape factors of parts (a) and (b).

For T, = 100 C and 7T, = 60 C, determine the heat
transfer rate per unit depth for k = 15 W/m-K for
parts (a) and (b).

(d)

4.13 An electrical heater 100 mm long and 5 mm in diame-

ter is inserted into a hole drilled normal to the surface
of a large block of material having a thermal conduc-
tivity of 5 W/m-K. Estimate the temperature reached
by the heater when dissipating 50 W with the surface
of the block at a temperature of 25 C.

4.14 Two parallel pipelines spaced 0.5 m apart are buried in

soil having a thermal conductivity of 0.5 W/m-K. The
pipes have outer diameters of 100 and 75 mm with
surface temperatures of 175 C and 5 C, respectively.
Estimate the heat transfer rate per unit length between
the two pipelines.

4.15

4.16

4.17

4.18
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A small water droplet of diameter D = 100 um and
temperature 7, = 0 C falls on a nonwetting metal sur-
face that is at temperature 7, = 15 C. Determine how
long it will take for the droplet to freeze completely.
The latent heat of fusion is hy = 334 kJ/kg.

/UAir

Water droplet

D, Ty

A tube of diameter 50 mm having a surface temperature
of 85 C is embedded in the center plane of a concrete
slab 0.1 m thick with upper and lower surfaces at 20 C.
Using the appropriate tabulated relation for this config-
uration, find the shape factor. Determine the heat trans-
fer rate per unit length of the tube.

Nonwetting metal, T,

Pressurized steam at 450 K flows through a long, thin-
walled pipe of 0.5-m diameter. The pipe is enclosed in a
concrete casing that is of square cross section and 1.5 m
on a side. The axis of the pipe is centered in the casing,
and the outer surfaces of the casing are maintained at
300 K. What is the heat loss per unit length of pipe?

The temperature distribution in laser-irradiated materi-
als is determined by the power, size, and shape of the
laser beam, along with the properties of the material
being irradiated. The beam shape is typically Gaussian,
and the local beam irradiation flux (often referred to as
the laser uence ) is

q'(x,y) = ¢"(x = y = 0)exp(—x/r,)* exp(—y/r,)*

The x- and y-coordinates determine the location of
interest on the surface of the irradiated material. Con-
sider the case where the center of the beam is located at
x =y =r=0. The beam is characterized by a radius
r,, defined as the radial location where the local fluence
is ¢"(r,) = ¢"(r = 0)/e = 0.3684"(r = 0).

A shape factor for Gaussian heating is S = 27'"r,,
where S is defined in terms of T, ,,, — T, [Nissin, Y. L,
A. Lietoila, R. G. Gold, and J. F. Gibbons, J. Appl.
Phys., 51, 274, 1980]. Calculate the maximum steady-
state surface temperature associated with irradiation of
a material of thermal conductivity k = 27 W/m-K and
absorptivity « = 0.45 by a Gaussian beam with
r, = 0.1 mm and power P = 1 W. Compare your result
with the maximum temperature that would occur if the
irradiation was from a circular beam of the same diam-
eter and power, but characterized by a uniform fluence
(aat beam). Also calculate the average temperature of
the irradiated surface for the uniform fluence case. The
temperature far from the irradiated spot is 7, = 25 C.
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4.20
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Hot water at 85 C ows through a thin-walled copper
tube of 30-mm diameter. The tube is enclosed by an
eccentric cylindrical shell that is maintained at 35 C and
has a diameter of 120 mm. The eccentricity, defined as
the separation between the centers of the tube and shell,
is 20 mm. The space between the tube and shell is filled
with an insulating material having a thermal conductiv-
ity of 0.05W/m-K. Calculate the heat loss per unit
length of the tube, and compare the result with the heat
loss for a concentric arrangement.

A furnace of cubical shape, with external dimensions of
0.35 m, is constructed from a refractory brick (fireclay).
If the wall thickness is 50 mm, the inner surface tem-
perature is 600 C, and the outer surface temperature is
75 C, calculate the heat loss from the furnace.

Laser beams are used to thermally process materials in
a wide range of applications. Often, the beam is scanned
along the surface of the material in a desired pattern.
Consider the laser heating process of Problem 4.18,
except now the laser beam scans the material at a scan-
ning velocity of U. A dimensionless maximum surface
temperature can be well correlated by an expression of
the form [Nissin, Y. I., A. Lietoila, R. G. Gold, and J. F.
Gibbons, J. Appl. Phys., 51,274, 1980]

Tl,mux,U=0 —T

2
=14 0.301Pe — 0.0108P¢*
Tl,max,U¢0 - T2

for the range 0 < Pe < 10, where Pe is a dimensionless
velocity known as the Peclet number. For this problem,
Pe = Ur,,/\@a where « is the thermal diffusivity of the
material. The maximum material temperature does not
occur directly below the laser beam, but at a lag distance
6 behind the center of the moving beam. The dimension-
less lag distance can be correlated to Pe by [Sheng, . C.,
and Y. Chen, J. Thermal Stresses, 14, 129, 1991]

8U _ .944pe'ss

a
(a) For the laser beam size and shape and material of
Problem 4.18, determine the laser power required to
achieve T, = 200 C for U = 2m/s. The density
and specific heat of the material are p = 2000 kg/m®
and ¢ = 800 J/kg- K, respectively.

(b) Determine the lag distance & associated with
U =2m/s.

(c) Plot the required laser power to achieve T, , =
200°C for 0 = U = 2 m/s.

Shape Factors with Thermal Circuits

4.22

A double-glazed window consists of two sheets of
glass separated by an L = 0.2-mm-thick gap. The gap

is evacuated, eliminating conduction and convection
across the gap. Small cylindrical pillars, each
L=02mm long and D = 0.15mm in diameter, are
inserted between the glass sheets to ensure that the
glass does not break due to stresses imposed by
the pressure difference across each glass sheet. A con-
tact resistance of R;, = 1.5 X 10 °m*-K/W exists
between the pillar and the sheet. For nominal glass
temperatures of 7, =20 C and 7, = —10 C, deter-
mine the conduction heat transfer through an individ-
ual stainless steel pillar.

4.23 A pipeline, used for the transport of crude oil, is buried

in the earth such that its centerline is a distance of 1.5 m
below the surface. The pipe has an outer diameter of
0.5m and is insulated with a layer of cellular glass
100 mm thick. What is the heat loss per unit length of
pipe when heated oil at 120 C ows through the pipe
and the surface of the earth is at a temperature of 0 C?

4.24 A long power transmission cable is buried at a depth

(ground-to-cable-centerline distance) of 2 m. The cable
is encased in a thin-walled pipe of 0.1-m diameter, and,
to render the cable superconducting (with essentially
zero power dissipation), the space between the cable
and pipe is filled with liquid nitrogen at 77 K. If
the pipe is covered with a superinsulator (k; =
0.005 W/m-K) of 0.05-m thickness and the surface of
the earth (k, = 1.2W/m-K) is at 300 K, what is the
cooling load (W/m) that must be maintained by a cryo-
genic refrigerator per unit pipe length?

4.25 A small device is used to measure the surface tempera-

ture of an object. A thermocouple bead of diameter
D = 120 um is positioned a distance z = 100 um from
the surface of interest. The two thermocouple wires,
each of diameter d = 25 um and length L = 300 um,
are held by a large manipulator that is at a temperature

of T, = 23 C.
E Manipulator, 7,
i

D, Ty, Thermocouple
bead

]

If the thermocouple registers a temperature of
T,. = 29 C, what is the surface temperature? The thermal

— 2 —p]

T,

s
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conductivities of the chromel and alumel thermocouple
wires are kg, = 19 W/m+ K and ky; = 29 W/m- K, respec-
tively. You may neglect radiation and convection effects.

A cubical glass melting furnace has exterior dimensions
of width W= 5m on a side and is constructed from
refractory brick of thickness L = 0.35m and thermal
conductivity k = 1.4 W/m-K. The sides and top of the
furnace are exposed to ambient air at 25 C, with free
convection characterized by an average coefficient of
h =5W/m?-K. The bottom of the furnace rests on a
framed platform for which much of the surface is
exposed to the ambient air, and a convection coefficient
of h = 5W/m? K may be assumed as a first approxi-
mation. Under operating conditions for which combus-
tion gases maintain the inner surfaces of the furnace at
1100 C, what is the heat loss from the furnace?

A hot fluid passes through circular channels of a cast
iron platen (A) of thickness L, = 30 mm which is in
poor contact with the cover plates (B) of thickness
Lg = 7.5 mm. The channels are of diameter D = 15 mm
with a centerline spacing of L, = 60 mm. The thermal
conductivities of the materials are k, = 20 W/m-K and
kg = 75 W/m-K, while the contact resistance between
the two materials is R/, = 2.0 X 10~* m?-K/W. The hot
fluid is at 7; = 150 C, and the convection coefcient is
1000 W/m?+ K. The cover plate is exposed to ambient
air at T, =25 C with a convection coefcient of
200 W/m*+K. The shape factor between one channel
and the platen top and bottom surfaces is 4.25.

Air ::

iy S

o

o
@

(a) Determine the heat rate from a single channel per
unit length of the platen normal to the page, g;.

(b) Determine the outer surface temperature of the
cover plate, 7.

(c) Comment on the effects that changing the center-
line spacing will have on ¢; and 7,. How would
insulating the lower surface affect ¢; and 7,?

4.28

4.29
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An aluminum heat sink (k = 240 W/m-K), used to cool
an array of electronic chips, consists of a square channel
of inner width w =25 mm, through which liquid
flow may be assumed to maintain a uniform surface
temperature of 7, = 20°C. The outer width and length
of the channel are W =40 mm and L = 160 mm,
respectively.

Chip, T,

Heat sink —|

T

P
N

If N =120 chips attached to the outer surfaces of the
heat sink maintain an approximately uniform surface
temperature of 7, = 50°C and all of the heat dissipated
by the chips is assumed to be transferred to the coolant,
what is the heat dissipation per chip? If the contact resis-
tance between each chip and the heat sink is R, =
0.2 K/W, what is the chip temperature?

Coolant

Hot water is transported from a cogeneration power sta-
tion to commercial and industrial users through steel
pipes of diameter D = 150 mm, with each pipe centered
in concrete (k = 1.4 W/m-K) of square cross section
(w = 300 mm). The outer surfaces of the concrete are
exposed to ambient air for which 7, = 0°C and h =
25 W/m?-K.

Concrete, k
T
Air
T, h w
—
— )

/

Wat L

i

2

(a) If the inlet temperature of water flowing through
the pipe is 7; = 90°C, what is the heat loss per unit
length of pipe in proximity to the inlet? The tem-
perature of the pipe 7, may be assumed to be that
of the inlet water.

If the difference between the inlet and outlet tem-
peratures of water flowing through a 100-m-long
pipe is not to exceed 5°C, estimate the minimum

(b)
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4.30

4.31

4.32
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allowable flow rate m. A value of ¢ = 4207 J/kg-K
may be used for the specific heat of the water.

A long constantan wire of 1-mm diameter is butt
welded to the surface of a large copper block, forming a
thermocouple junction. The wire behaves as a fin, per-
mitting heat to flow from the surface, thereby depressing
the sensing junction temperature 7; below that of the
block T,

Air |

A Thermocouple wire, D

T

Copper block, T,

(a) If the wire is in air at 25 C with a convection coef-
ficient of 10 W/m?-K, estimate the measurement
error (7; — T,) for the thermocouple when the
block is at 125 C.

(b) | For convection coefficients of 5, 10, and 25 W/m?*K,
plot the measurement error as a function of the ther-
mal conductivity of the block material over the range
15 to 400 W/m-K. Under what circumstances is it
advantageous to use smaller diameter wire?

A hole of diameter D = 0.25 m is drilled through the
center of a solid block of square cross section with
w=1m on a side. The hole is drilled along the
length, / =2 m, of the block, which has a thermal
conductivity of k£ = 150 W/m-K. The four outer sur-
faces are exposed to ambient air, with 7, , = 25 C and
hy, = 4 W/m*-K, while hot oil flowing through the hole
is characterized by T, ; = 300 C and &, = 50 W/m?-K.
Determine the corresponding heat rate and surface
temperatures.

hy, T, 1
D=0.25m

hy T,

oo,

f—w=1m—

In Chapter 3 we assumed that, whenever fins are attached
to a base material, the base temperature is unchanged.
What in fact happens is that, if the temperature of the base

material exceeds the fluid temperature, attachment of a fin
depresses the junction temperature 7; below the original
temperature of the base, and heat flow from the base
material to the fin is two-dimensional.

T, T h

el I \g

"
L Aluminum

pin fin

o]

Aluminum or
| stainless steel
base

Consider conditions for which a long aluminum pin fin
of diameter D = 5 mm is attached to a base material
whose temperature far from the junction is maintained
at 7, = 100 C. Fin convection conditions correspond to
h=50W/m?*-Kand T, =25 C.

(a) What are the fin heat rate and junction tempera-
ture when the base material is (i) aluminum (k =
240 W/m-K) and (ii) stainless steel (k= 15
W/m-K)?

Repeat the foregoing calculations if a thermal con-

tact resistance of R} ; = 3 X 107> m*-K/W is asso-

ciated with the method of joining the pin fin to the
base material.

Considering the thermal contact resistance, plot the
heat rate as a function of the convection coefficient
over the range 10 = 7 = 100 W/m?-K for each of
the two materials.

(b)

4.33 An igloo is built in the shape of a hemisphere, with an

inner radius of 1.8 m and walls of compacted snow that
are 0.5 m thick. On the inside of the igloo, the surface
heat transfer coefficient is 6 W/m?-K; on the outside,
under normal wind conditions, it is 15 W/m?-K. The
thermal conductivity of compacted snow is 0.15 W/m* K.
The temperature of the ice cap on which the igloo sits is
—20 C and has the same thermal conductivity as the
compacted snow.

Arctic
wind, 7.,

Ice cap, T
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(a) Assuming that the occupants’ body heat provides a
continuous source of 320 W within the igloo, cal-
culate the inside air temperature when the outside
air temperature is 7,, = —40 C. Be sure to consider
heat losses through the floor of the igloo.

Using the thermal circuit of part (a), perform a
parameter sensitivity analysis to determine which
variables have a significant effect on the inside air
temperature. For instance, for very high wind con-
ditions, the outside convection coefficient could
double or even triple. Does it make sense to con-
struct the igloo with walls half or twice as thick?

4.34 Consider the thin integrated circuit (chip) of Problem

3.150. Instead of attaching the heat sink to the chip
surface, an engineer suggests that sufficient cooling
might be achieved by mounting the top of the chip
onto a large copper (k = 400 W/m-K) surface that is
located nearby. The metallurgical joint between the
chip and the substrate provides a contact resistance of
R/, =5 X% 107° m*-K/W, and the maximum allowable
chip temperature is 85 C. If the large substrate temper-
ature is 7, = 25 C at locations far from the chip, what
is the maximum allowable chip power dissipation g.?

4.35 An electronic device, in the form of a disk 20 mm in

diameter, dissipates 100 W when mounted flush on
a large aluminum alloy (2024) block whose tempera-
ture is maintained at 27 C. The mounting arrangement
is such that a contact resistance of R;. =5 X 1073
m?+ K/W exists at the interface between the device and
the block.

Air Pin fins (30), D= 1.5 mm
T, h L=15mm
Electronic device,
Ta P Copper, 5-mm
thickness
| Device
i X, I Epoxy,
Aluminum ne
block, T;,

(a) Calculate the temperature the device will reach,
assuming that all the power generated by the device
must be transferred by conduction to the block.

(b) To operate the device at a higher power level, a
circuit designer proposes to attach a finned heat sink
to the top of the device. The pin fins and base mate-
rial are fabricated from copper (k =400 W/m-*K)
and are exposed to an airstream at 27 C for which
the convection coefficient is 1000 W/m?- K. For the
device temperature computed in part (a), what is

the permissible operating power?

4.36

4.37
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The elemental unit of an air heater consists of a long
circular rod of diameter D, which is encapsulated by a
finned sleeve and in which thermal energy is generated
by ohmic heating. The N fins of thickness 7 and length L
are integrally fabricated with the square sleeve of width
w. Under steady-state operating conditions, the rate of
thermal energy generation corresponds to the rate of heat
transfer to airflow over the sleeve.

Airflow
T., h

Hgater
(g, k)

(a) Under conditions for which a uniform surface
temperature 7, is maintained around the circum-
ference of the heater and the temperature 7.,
and convection coefficient & of the airflow are
known, obtain an expression for the rate of heat
transfer per unit length to the air. Evaluate the
heat rate for T, = 300°C, D = 20 mm, an alu-
minum sleeve (k, =240 W/m-K), w = 40 mm,
N=16, t=4mm, L=20mm, 7, = 50°C, and
h =500 W/m*-K.

For the foregoing heat rate and a copper heater of
thermal conductivity k;, = 400 W/m*K, what is the
required volumetric heat generation within the heater
and its corresponding centerline temperature?

(b)

(c) With all other quantities unchanged, explore the
effect of variations in the fin parameters (N, L, f) on
the heat rate, subject to the constraint that the fin
thickness and the spacing between fins cannot be

less than 2 mm.

For a small heat source attached to a large substrate, the
spreading resistance associated with multidimensional
conduction in the substrate may be approximated by the
expression [Yovanovich, M. M., and V. W. Antonetti,
in Adv. Thermal Modeling Elec. Comp. and Systems,
Vol. 1, A. Bar-Cohen and A. D. Kraus, Eds., Hemisphere,
NY, 79-128, 1988]

1 — 1L410A, + 0.344 A3 + 0.043 A’ + 0.034 A7
Ay A3

Rt(ﬁp) =

where A, = A, /A, is the ratio of the heat source area
to the substrate area. Consider application of the expres-
sion to an in-line array of square chips of width L, =
5 mm on a side and pitch S, = 10 mm. The interface
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Substrate, k

Chapter 4 » Two-Dimensional, Steady-State Conduction

between the chips and a large substrate of thermal con-
ductivity kg, = 80 W/m+K 1is characterized by a ther-
mal contact resistance of R}, = 0.5 X 10~ m?-K/W.

Top view

sub

Air > Side view
T.,h —
=Sy —tetL,
v I s I |
Substrate
Ric

If a convection heat transfer coefficient of h =
100 W/m?+K is associated with airflow (7., = 15°C)
over the chips and substrate, what is the maximum
allowable chip power dissipation if the chip tempera-
ture is not to exceed T}, = 85°C?

Finite-Difference Equations: Derivations

4.38

4.39

4.40

4.41

Consider nodal configuration 2 of Table 4.2. Derive the
finite-difference equations under steady-state conditions
for the following situations.

(a) The horizontal boundary of the internal corner is
perfectly insulated and the vertical boundary is sub-
jected to the convection process (T, h).

(b) Both boundaries of the internal corner are perfectly
insulated. How does this result compare with
Equation 4.41?

Consider nodal configuration 3 of Table 4.2. Derive the
finite-difference equations under steady-state conditions
for the following situations.

(a) The boundary is insulated. Explain how Equation
4.42 can be modified to agree with your result.

(b) The boundary is subjected to a constant heat flux.

Consider nodal configuration 4 of Table 4.2. Derive the
finite-difference equations under steady-state condi-
tions for the following situations.

(a) The upper boundary of the external corner is per-
fectly insulated and the side boundary is subjected
to the convection process (7, h).

(b) Both boundaries of the external corner are perfectly

insulated. How does this result compare with Equa-
tion 4.43?

One of the strengths of numerical methods is their
ability to handle complex boundary conditions. In

4.42

4.43

4.44

the sketch, the boundary condition changes from
specified heat flux ¢; (into the domain) to convection,
at the location of the node (m, n). Write the steady-
state, two-dimensional finite difference equation at
this node.

le—— Ax—» l

Determine expressions for qg,—1, - gunyp Qont1s) — (nny»
Gonn+1) = ey A G -1y 5 (uy fOr conduction associated
with a control volume that spans two different materials.
There is no contact resistance at the interface between the
materials. The control volumes are L units long into the
page. Write the finite difference equation under steady-
state conditions for node (m, n).

kg

Consider heat transfer in a one-dimensional (radial)
cylindrical coordinate system under steady-state condi-
tions with volumetric heat generation.

(a) Derive the finite-difference equation for any inte-
rior node m.

(b) Derive the finite-difference equation for the node n
located at the external boundary subjected to the
convection process (7., h).

In a two-dimensional cylindrical configuration, the radial
(Ar) and angular (A¢) spacings of the nodes are uniform.
The boundary at » = r; is of uniform temperature 7;. The
boundaries in the radial direction are adiabatic (insulated)
and exposed to surface convection (7, h), as illustrated.
Derive the finite-difference equations for (i) node 2,
(ii) node 3, and (iii) node 1.
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oA

iy /

T

Uniform
temperature
surface, T;

4.45 Upper and lower surfaces of a bus bar are convectively
cooled by air at T,,, with h, # h;. The sides are cooled
by maintaining contact with heat sinks at 7, through a
thermal contact resistance of R},. The bar is of thermal
conductivity k, and its width is twice its thickness L.

q k

°[l6 7 3 9 10]°
m 12 13 14 15 4
Ry, — R},

Consider steady-state conditions for which heat is uni-
formly generated at a volumetric rate ¢ due to passage
of an electric current. Using the energy balance method,
derive finite-difference equations for nodes 1 and 13.

4.46 Derive the nodal finite-difference equations for the fol-
lowing configurations.

(a) Node (m, n) on a diagonal boundary subjected to
convection with a fluid at 7, and a heat transfer
coefficient . Assume Ax = Ay.

265

(b) Node (m, n) at the tip of a cutting tool with the upper
surface exposed to a constant heat flux ¢, and the
diagonal surface exposed to a convection cooling
process with the fluid at 7, and a heat transfer
coefficient 4. Assume Ax = Ay.

4.47 Consider the nodal point O located on the boundary
between materials of thermal conductivity k, and k.

[ ] [ )
2 ZF Material A
1 90 3
Ax=Ay Material B
N k
° Ae ° B

Derive the finite-difference equation, assuming no
internal generation.

4.48 Consider the two-dimensional grid (Ax = Ay) represent-
ing steady-state conditions with no internal volumetric
generation for a system with thermal conductivity k. One
of the boundaries is maintained at a constant temperature
T, while the others are adiabatic.

13 4 5 6
) ° ° °
14 3 Insulation
T ° °
Ay
y 15 2
A . | Isothermal
‘¢ Ax+‘ boundary, T
* 16 1
AR A N AL Insulation

Derive an expression for the heat rate per unit length nor-
mal to the page crossing the isothermal boundary (7).

4.49 Consider a one-dimensional fin of uniform cross-
sectional area, insulated at its tip, x = L. (See Table 3.4,
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case B). The temperature at the base of the fin 7}, and of
the adjoining fluid T, as well as the heat transfer coef-
ficient /& and the thermal conductivity k, are known.

(a) Derive the finite-difference equation for any inte-
rior node m.

(b) Derive the finite-difference equation for a node n
located at the insulated tip.

Finite-Difference Equations: Analysis

4.50 Consider the network for a two-dimensional system with-
out internal volumetric generation having nodal tempera-
tures shown below. If the grid spacing is 125 mm and the
thermal conductivity of the material is 50 W/m-K, calcu-
late the heat rate per unit length normal to the page from
the isothermal surface (7).

Node | T; (°C)
120.55
120.64
121.29
123.89
134.57
150.49
147.14

2
0

oW

o

(&)
NoohwN =

[ ]
I INT Yol

LTS =100°C

4.51 An ancient myth describes how a wooden ship was
destroyed by soldiers who reflected sunlight from their
polished bronze shields onto its hull, setting the ship
ablaze. To test the validity of the myth, a group of col-
lege students are given mirrors and they reflect sunlight
onto a 100 mm X 100 mm area of a t = 10-mm-thick
plywood mockup characterized by k = 0.8 W/m*K. The
bottom of the mockup is in water at 7,, = 20 C, while
the air temperature is 7, = 25 C. The surroundings are
at T,,, = 23 C. The wood has an emissivity of ¢ = 0.90;
both the front and back surfaces of the plywood are char-
acterized by A =5 W/m?-K. The absorbed irradiation
from the N students’ mirrors is Gy = 70,000 W/m? on
the front surface of the mockup.

| L7, -23cC
T, = 25°C
i<—L2 = 800 mm4>| 2 5 Wim2-K
T T T T T T T
\ ]
| | | | | | |
[ R L A B N |
e —— ——————F—~ H=300mm

Irradiation location AN | |

. I I |
| L] . L] | L] |
S——F-—-— ——d———F

I I I I I

le—1,=500mm—| 7, -20c

Irradiation location B

(a) A debate ensues concerning where the beam should
be focused, location A or location B. Using a finite
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difference method with Ax = Ay = 100 mm and
treating the wood as a two-dimensional extended
surface (Figure 3.17a), enlighten the students as to
whether location A or location B will be more
effective in igniting the wood by determining the
maximum local steady-state temperature.

(b) Some students wonder whether the same technique
can be used to melt a stainless steel hull. Repeat
part (a) considering a stainless steel mockup of the
same dimensions with k = 15 W/m-K and ¢ = 0.2.
The value of the absorbed irradiation is the same as

in part (a).

4.52 Consider the square channel shown in the sketch oper-
ating under steady-state conditions. The inner surface
of the channel is at a uniform temperature of 600K,
while the outer surface is exposed to convection with a
fluid at 300 K and a convection coefficient of 50 W/m?+ K.
From a symmetrical element of the channel, a two-
dimensional grid has been constructed and the nodes
labeled. The temperatures for nodes 1, 3, 6, 8, and 9 are

identified.
T. =300 K 1 2 3 4
h =50 W/m? K ? ° ° -
| / | //
I 5 6 7/
| ! /
i / Ax=Ay=0.01m
Ty
‘ 8l 9/
i T =600 K ’ x
k=1 wimk
T, =430 K Tg=T,=600K
T,=394K T,=492K

(a) Beginning with properly defined control volumes,
derive the finite-difference equations for nodes 2,
4, and 7 and determine the temperatures 75, T, and
T; (K).

(b) Calculate the heat loss per unit length from the
channel.

4.53 A long conducting rod of rectangular cross section
(20mm X 30mm) and thermal conductivity k =
20 W/m-K experiences uniform heat generation at a
rate ¢ =5 X 10’ W/m®, while its surfaces are main-
tained at 300 K.

(a) Using a finite-difference method with a grid spac-
ing of 5 mm, determine the temperature distribution
in the rod.

With the boundary conditions unchanged, what
heat generation rate will cause the midpoint tem-
perature to reach 600 K?
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A flue passing hot exhaust gases has a square cross
section, 300 mm to a side. The walls are constructed of
refractory brick 150 mm thick with a thermal conduc-
tivity of 0.85 W/m + K. Calculate the heat loss from the
flue per unit length when the interior and exterior sur-
faces are maintained at 350 and 25 C, respectively. Use
a grid spacing of 75 mm.

Steady-state temperatures (K) at three nodal points of a
long rectangular rod are as shown. The rod experiences
a uniform volumetric generation rate of 5 X 10”7 W/m®
and has a thermal conductivity of 20 W/m-K. Two of its
sides are maintained at a constant temperature of 300K,
while the others are insulated.

oo

heS A SR PS [ ‘9.
1 2 398.0 ~
. 5mm
4 L 2 @ 9’ J
348.5 3 374.6 |-

4.56

L

Uniform temperature, 300 K

(a) Determine the temperatures at nodes 1, 2, and 3.

(b) Calculate the heat transfer rate per unit length
(W/m) from the rod using the nodal temperatures.
Compare this result with the heat rate calculated
from knowledge of the volumetric generation rate
and the rod dimensions.

Functionally graded materials are intentionally fabri-
cated to establish a spatial distribution of properties in
the final product. Consider an L X L two-dimensional
object with L = 20 mm. The thermal conductivity dis-
tribution of the functionally graded material is k(x) =
20 W/m-K + (7070 W/m¥*-K) x*. Two sets of boundary
conditions, denoted as cases 1 and 2, are applied.

Surface 3

Surface 2
Surface 1

X

Surface 4
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Case Surface Boundary Condition

T=100C
T=50C
Adiabatic
Adiabatic
Adiabatic
Adiabatic
T=50C
T=100C

[\
B S R S R \

(a) Determine the spatially averaged value of the ther-
mal conductivity k. Use this value to estimate the
heat rate per unit length for cases 1 and 2.

(b) Using a grid spacing of 2 mm, determine the heat
rate per unit depth for case 1. Compare your result
to the estimated value calculated in part (a).

(c) Using a grid spacing of 2 mm, determine the heat
rate per unit depth for case 2. Compare your result
to the estimated value calculated in part (a).

4.57 Steady-state temperatures at selected nodal points of

the symmetrical section of a flow channel are known
to be T,=9547°C, T;=117.3°C, Ts5=79.79°C,
T, = 77.29°C, Ty = 87.28°C, and T, = 77.65°C. The
wall experiences uniform volumetric heat generation of
¢ =10°W/m® and has a thermal conductivity of k =
10 W/m-K. The inner and outer surfaces of the chan-
nel experience convection with fluid temperatures of
T,;,=50°C and T.,=25°C and convection coeffi-
cients of i, =500 W/m?*+K and h, = 250 W/m*- K.

¥
1T 2 T.. i by

Surface B kG
4
L 5 6 Symmetry
/ plane

Ax =Ay =25 mm

Insulation

(a) Determine the temperatures at nodes 1, 4, 7, and 9.

(b) Calculate the heat rate per unit length (W/m) from
the outer surface A to the adjacent fluid.

(c) Calculate the heat rate per unit length from the
inner fluid to surface B.

(d) Verify that your results are consistent with an over-
all energy balance on the channel section.

4.58 Consider an aluminum heat sink (k = 240 W/m-K),

such as that shown schematically in Problem 4.28. The
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Heat sink, k

4.59
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inner and outer widths of the square channel are

w = 20 mm and W = 40 mm, respectively, and an outer

surface temperature of 7, = 50°C is maintained by the

array of electronic chips. In this case, it is not the inner
surface temperature that is known, but conditions

(T, h) associated with coolant flow through the chan-

nel, and we wish to determine the rate of heat transfer

to the coolant per unit length of channel. For this pur-
pose, consider a symmetrical section of the channel and

a two-dimensional grid with Ax = Ay = Smm.

(a) For T, = 20°C and & = 5000 W/m?-K, determine
the unknown temperatures, 7, . . ., 7, and the rate
of heat transfer per unit length of channel, ¢'.

(b) | Assess the effect of variations in & on the unknown
temperatures and the heat rate.

\//

/Ak ‘T/
’Tl/-T5 T

\ _h T2 °Ts
1y

\ -

L(:oolant, T., h

Conduction within relatively complex geometries can
sometimes be evaluated using the finite-difference
methods of this text that are applied to subdomains and
patched together. Consider the two-dimensional
domain formed by rectangular and cylindrical subdo-
mains patched at the common, dashed control surface.
Note that, along the dashed control surface, tempera-
tures in the two subdomains are identical and local
conduction heat fluxes to the cylindrical subdomain
are identical to local conduction heat fluxes from the
rectangular subdomain.

Adiabatic
surfaces

4.60

Calculate the heat transfer per unit depth into the page,
q', using Ax = Ay = Ar = 10mm and A¢p = 7/8. The
base of the rectangular subdomain is held at 7, = 20 C,
while the vertical surface of the cylindrical subdomain
and the surface at outer radius r, are at 7. = 0 C. The
remaining surfaces are adiabatic, and the thermal con-
ductivity is k = 10 W/m-K.

Consider the two-dimensional tube of a noncircular
cross section formed by rectangular and semicylindrical
subdomains patched at the common dashed control sur-
faces in a manner similar to that described in Problem
4.59. Note that, along the dashed control surfaces, tem-
peratures in the two subdomains are identical and local
conduction heat fluxes to the semicylindrical subdo-
main are identical to local conduction heat fluxes from
the rectangular subdomain. The bottom of the domain
is held at 7, = 100 C by condensing steam, while the
flowing fluid is characterized by the temperature and
convection coefficient shown in the sketch. The
remaining surfaces are insulated, and the thermal con-
ductivity is k = 15 W/m-K.

k=15 W/m-K

T.,= 20°C
hy= 240 W/m2-K

27, = 100°C

4.61

2 -

Find the heat transfer rate per unit length of tube, ¢’,
using Ax = Ay = Ar=10mm and A¢ = 7/8. Hint:
Take advantage of the symmetry of the problem by
considering only half of the entire domain.

The steady-state temperatures ( C) associated with selec-
ted nodal points of a two-dimensional system having a
thermal conductivity of 1.5 W/m-K are shown on the
accompanying grid.

Insulated

T. = 30°C
h =50 W/m?K
- H
{ ]

[ ° °
1729 1, 1328 67.0

L Isothermal boundary
T, =200°C
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(a) Determine the temperatures at nodes 1, 2, and 3.

(b) Calculate the heat transfer rate per unit thickness
normal to the page from the system to the fluid.

4.62 A steady-state, finite-difference analysis has been per-
formed on a cylindrical fin with a diameter of 12 mm
and a thermal conductivity of 15 W/m-K. The convec-
tion process is characterized by a fluid temperature of
25 C and a heat transfer coefcient of 25 W/m 2-K.

T..h
- — e -—&—-—e—-—X- D T =934C
4 T,=89.5C

e—Ax—>

Lx

(a) The temperatures for the first three nodes, sepa-
rated by a spatial increment of x = 10mm, are
given in the sketch. Determine the fin heat rate.

(b) Determine the temperature at node 3, 7;.
4.63 Consider the two-dimensional domain shown. All sur-

faces are insulated except for the isothermal surfaces at
x=0and L.

2H/3 T, H

y 0.8L —»

X

[«——— L=D5H/3 ———

(a) Use a one-dimensional analysis to estimate the
shape factor S.

(b) Estimate the shape factor using a finite difference
analysis with Ax = Ay = 0.05L. Compare your
answer with that of part (a), and explain the differ-
ence between the two solutions.

4.64 Consider two-dimensional, steady-state conduction in a
square cross section with prescribed surface temperatures.

y
rlOO"C
1 2
I 1l
50°C 200°C
3 4

X
L3OO°C
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(a) Determine the temperatures at nodes 1, 2, 3, and 4.
Estimate the midpoint temperature.

(b) | Reducing the mesh size by a factor of 2, determine
the corresponding nodal temperatures. Compare
your results with those from the coarser grid.

From the results for the finer grid, plot the 75, 150,
and 250 C isotherms.

4.65 Consider a long bar of square cross section (0.8 m to the
side) and of thermal conductivity 2 W/m* K. Three of these
sides are maintained at a uniform temperature of 300 C.
The fourth side is exposed to a uid at 100 C for which
the convection heat transfer coefficient is 10 W/m?*- K.

(a) Using an appropriate numerical technique with a
grid spacing of 0.2 m, determine the midpoint tem-
perature and heat transfer rate between the bar and
the fluid per unit length of the bar.

(b) | Reducing the grid spacing by a factor of 2,
determine the midpoint temperature and heat
transfer rate. Plot the corresponding temperature
distribution across the surface exposed to the fluid.
Also, plot the 200 and 250 C isotherms.

4.66 Consider a two-dimensional, straight triangular fin of
length L =50mm and base thickness 7= 20 mm. The
thermal conductivity of the fin is kK = 25 W/m-K. The
base temperature is 7}, = 50 C, and the n is exposed to
convection conditions characterized by h = 50 W/m?*-K,
T, =20 C. Using a nite difference mesh with Ax=
10 mm and Ay = 2 mm, and taking advantage of symme-
try, determine the fin efficiency, 1. Compare your value of
the fin efficiency with that reported in Figure 3.19.

[e———————— L=50mm ——————————»
5
4 * 10
3 9 e 14
2 e 38 13 17
1=20 mm —F 7 12 16 £9 21
y
7= 20°C
x h=50 Wm2-K

A common arrangement for heating a large surface area
is to move warm air through rectangular ducts below
the surface. The ducts are square and located midway
between the top and bottom surfaces that are exposed to

room air and insulated, respectively.
Air duct— rTz =30°C FTI =80°C rConcrete

J i

]
I

f— L —>
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For the condition when the floor and duct temperatures
are 30 and 80 C, respectively, and the thermal conductiv-
ity of concrete is 1.4 W/m+K, calculate the heat rate from
each duct, per unit length of duct. Use a grid spacing with
Ax =2 Ay, where Ay = 0.125L and L = 150 mm.

Consider the gas turbine cooling scheme of Example 4.3.

4.69

In Problem 3.23, advantages associated with applying a
thermal barrier coating (TBC) to the exterior surface of
a turbine blade are described. If a 0.5-mm-thick zirco-
nia coating (k= 1.3 W/m-K, R/, = 10"*m*-K/W) is
applied to the outer surface of the air-cooled blade,
determine the temperature field in the blade for the
operating conditions of Example 4.3.

A long, solid cylinder of diameter D = 25 mm is formed
of an insulating core that is covered with a very thin
(t = 50 um), highly polished metal sheathing of thermal
conductivity k=25 W/m-K. Electric current flows
through the stainless steel from one end of the cylinder to
the other, inducing uniform volumetric heating within the
sheathing of ¢ = 5 X 10° W/m®. As will become evident
in Chapter 6, values of the convection coefficient
between the surface and air for this situation are spa-
tially nonuniform, and for the airstream conditions of
the experiment, the convection heat transfer coefficient
varies with the angle 6 as i(f) = 26 + 0.6370 — 8.926>
for0 =60 < #/2 and h(0) = 5 for /2 = 0 = .

t=50 um

Air
i = 25°C D =25 mm
B ——
Metal sheathing

4.70

§=5x10°W/m3
k=25 W/m-K

Insulation

(a) Neglecting conduction in the #-direction within the
stainless steel, plot the temperature distribution
T@0)for0=0 =mforT, =25 C.

Accounting for §-direction conduction in the stain-
less steel, determine temperatures in the stainless
steel at increments of A6 = 7/20 for 0 =60 = .
Compare the temperature distribution with that of
part (a).

Hint: The temperature distribution is symmetrical
about the horizontal centerline of the cylinder.

(b)

Consider Problem 4.69. An engineer desires to measure
the surface temperature of the thin sheathing by painting
it black (¢ = 0.98) and using an infrared measurement

4.71

L =250
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device to nonintrusively determine the surface tempera-
ture distribution. Predict the temperature distribution of
the painted surface, accounting for radiation heat trans-
fer with large surroundings at 7, = 25 C.

Consider using the experimental methodology of Prob-
lem 4.70 to determine the convection coefficient distri-
bution about an airfoil of complex shape.

| L r,—asc

sur

6 7 8 9
5 1044

—]

—

> 2827 2 25 2423 o5

0
Metal sheathing 1918 17

Accounting for conduction in the metal sheathing and
radiation losses to the large surroundings, determine the
convection heat transfer coefficients at the locations
shown. The surface locations at which the temperatures
are measured are spaced 2 mm apart. The thickness of
the metal sheathing is # = 20 um, the volumetric gener-
ation rate is ¢ = 20 X 10° W/m?, the sheathing’s ther-
mal conductivity is k = 25 W/m-K, and the emissivity
of the painted surface is & = 0.98. Compare your
results to cases where (i) both conduction along the
sheathing and radiation are neglected, and (ii) when
only radiation is neglected.

Temperature Temperature Temperature

Location (O Location (O Location (O
1 27.77 11 34.29 21 31.13
2 27.67 12 36.78 22 30.64
3 27.71 13 39.29 23 30.60
4 27.83 14 4151 24 30.77
5 28.06 15 42.68 25 31.16
6 28.47 16 42.84 26 31.52
7 28.98 17 41.29 27 31.85
8 29.67 18 37.89 28 31.51
9 30.66 19 34.51 29 2991
10 32.18 20 32.36 30 28.42

A thin metallic foil of thickness 0.25 mm with a pattern

of extremely small holes serves as an acceleration grid
to control the electrical potential of an ion beam. Such a
grid is used in a chemical vapor deposition (CVD)
process for the fabrication of semiconductors. The top
surface of the grid is exposed to a uniform heat flux
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caused by absorption of the ion beam, g7 = 600 W/m>,
The edges of the foil are thermally coupled to water-
cooled sinks maintained at 300 K. The upper and lower
surfaces of the foil experience radiation exchange with
the vacuum enclosure walls maintained at 300 K. The
effective thermal conductivity of the foil material is
40 W/m*K, and its emissivity is 0.45.

t——Vacuum enclosure, Ty,

lon beam, ¢ $ $

LU L apiees

G o &
D ‘ L
GridJ

@ © D
Lo
Grid hole
) ~—= pattern
L L=115mm
X
Water-cooled electrode

sink, T.

sink

—_—

Assuming one-dimensional conduction and using a
finite-difference method representing the grid by 10
nodes in the x-direction, estimate the temperature distri-
bution for the grid. Hint: For each node requiring an
energy balance, use the linearized form of the radiation
rate equation, Equation 1.8, with the radiation coefficient
h,, Equation 1.9, evaluated for each node.

A long bar of rectangular cross section, 0.4 m X 0.6 m on
a side and having a thermal conductivity of 1.5 W/m*K,
is subjected to the boundary conditions shown.

Uniform temperature,
T = 200°C

T., h

oo

Insulated —,

L

Uniform temperature,
T = 200°C

Two of the sides are maintained at a uniform tempera-
ture of 200 C. One of the sides is adiabatic, and the
remaining side is subjected to a convection process
with T,, = 30 C and & = 50 W/m?-K. Using an appro-
priate numerical technique with a grid spacing of 0.1 m,
determine the temperature distribution in the bar and
the heat transfer rate between the bar and the fluid per
unit length of the bar.

4.74 The top surface of a plate, including its grooves, is main-
tained at a uniform temperature of 7; = 200 C. The lower
surface is at 7, =20 C, the thermal conductivity is
15 W/m*K, and the groove spacing is 0.16 m.
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(a) Using a finite-difference method with a mesh size
of Ax = Ay = 40 mm, calculate the unknown nodal
temperatures and the heat transfer rate per width of
groove spacing (w) and per unit length normal to
the page.

With a mesh size of Ax = Ay = 10 mm, repeat the
foregoing calculations, determining the temperature
field and the heat rate. Also, consider conditions for
which the bottom surface is not at a uniform tempera-
ture 7, but is exposed to a fluid at 7', = 20 C. With
Ax = Ay = 10mm, determine the temperature field
and heat rate for values of 4 =15, 200, and 1000
W/m?-K, as well as for i — oo.

Refer to the two-dimensional rectangular plate of Prob-

lem 4.2. Using an appropriate numerical method with
Ax = Ay = 0.25m, determine the temperature at the
midpoint (1, 0.5).

The shape factor for conduction through the edge of

adjoining walls for which D > L/S, where D and L are
the wall depth and thickness, respectively, is shown in
Table 4.1. The two-dimensional symmetrical element
of the edge, which is represented by inset (a), is
bounded by the diagonal symmetry adiabat and a sec-
tion of the wall thickness over which the temperature
distribution is assumed to be linear between 7T, and T,.

Linear temperature

distribution
_L#}

|// Tl

Symmetry

¢ adiabat
.

I (@

1

| |
] ] B
—— e
E I R A |
> -
1 neL 1
(b)

(a) Using the nodal network of inset (@) with L = 40 mm,
determine the temperature distribution in the element
for 7} = 100 C and T, = 0 C. Evaluate the heat rate
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per unit depth (D = 1m) if k = 1 W/m-K. Determine
the corresponding shape factor for the edge, and
compare your result with that from Table 4.1.

(b) Choosing a value of n = 1 or n = 1.5, establish a
nodal network for the trapezoid of inset (b) and
determine the corresponding temperature field.
Assess the validity of assuming linear temperature
distributions across sections a—a and b—b.

The diagonal of a long triangular bar is well insulated,
while sides of equivalent length are maintained at uni-
form temperatures 7, and T},

T, = 100°C—

& Insulation

LT,, =0°C

(a) Establish a nodal network consisting of five nodes
along each of the sides. For one of the nodes on the
diagonal surface, define a suitable control volume and
derive the corresponding finite-difference equation.
Using this form for the diagonal nodes and appropri-
ate equations for the interior nodes, find the temper-
ature distribution for the bar. On a scale drawing of
the shape, show the 25, 50, and 75 C isotherms.

(b) An alternate and simpler procedure to obtain the
finite-difference equations for the diagonal nodes fol-
lows from recognizing that the insulated diagonal sur-
face is a symmetry plane. Consider a square 5 X 5
nodal network, and represent its diagonal as a symme-
try line. Recognize which nodes on either side of the
diagonal have identical temperatures. Show that you
can treat the diagonal nodes as “interior” nodes and
write the finite-difference equations by inspection.

A straight fin of uniform cross section is fabricated from
a material of thermal conductivity 50 W/m-K, thickness
w = 6mm, and length L = 48 mm, and it is very long in
the direction normal to the page. The convection heat
transfer coefficient is 500 W/m?+K with an ambient air
temperature of 7., = 30 C. The base of the n is main-

tained at 7, = 100 C, while the n tip is well insulated.

T.

oo

I %
T, h U

Insulated

h

- L -

(a) Using a finite-difference method with a space
increment of 4 mm, estimate the temperature distri-
bution within the fin. Is the assumption of one-
dimensional heat transfer reasonable for this fin?

(b) Estimate the fin heat transfer rate per unit length
normal to the page. Compare your result with the
one-dimensional, analytical solution, Equation 3.81.

(c) Using the finite-difference mesh of part (a), compute
and plot the fin temperature distribution for values
of & = 10, 100, 500, and 1000 W/m?+ K. Determine
and plot the fin heat transfer rate as a function of 4.

A rod of 10-mm diameter and 250-mm length has one

end maintained at 100 C. The surface of the rod expe-
riences free convection with the ambient air at 25 C
and a convection coefficient that depends on the differ-
ence between the temperature of the surface and the
ambient air. Specifically, the coefficient is prescribed
by a correlation of the form, Ay, = 2.89[0.6 + 0.624
(T — T.,)""®]%, where the units are /;, (W/m?>+K) and T (K).
The surface of the rod has an emissivity € = 0.2 and
experiences radiation exchange with the surroundings
at T,,, = 25 C. The n tip also experiences free convec-
tion and radiation exchange.

Quiescent air,
T.=25°C

Stainless steel rod D=
| T, = 100°C F: 14W/mK, €=02 10 mm
| 1
[
L =250 mm
Lox

Assuming one-dimensional conduction and using a
finite-difference method representing the fin by five
nodes, estimate the temperature distribution for the fin.
Determine also the fin heat rate and the relative contri-
butions of free convection and radiation exchange.
Hint: For each node requiring an energy balance, use
the linearized form of the radiation rate equation, Equa-
tion 1.8, with the radiation coefficient 4,, Equation 1.9,
evaluated for each node. Similarly, for the convection
rate equation associated with each node, the free con-
vection coefficient A, must be evaluated for each node.

A simplified representation for cooling in very large-scale

integration (VLSI) of microelectronics is shown in the
sketch. A silicon chip is mounted in a dielectric substrate,
and one surface of the system is convectively cooled,
while the remaining surfaces are well insulated from the
surroundings. The problem is rendered two-dimensional
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by assuming the system to be very long in the direction
perpendicular to the paper. Under steady-state operation,
electric power dissipation in the chip provides for uni-
form volumetric heating at a rate of g. However, the
heating rate is limited by restrictions on the maximum
temperature that the chip is allowed to achieve.

Coolant

Chip
k, = 50 W/m-K
h =500 W/m2:K G=10" W/m?3
- £
HV/4 A T
e 13—
Substrate, H=
ky =5 W/m-K 12 mm

}47 - . L>:27'mrﬁ

For the conditions shown on the sketch, will the maxi-
mum temperature in the chip exceed 85 C, the maximum
allowable operating temperature set by industry stan-
dards? A grid spacing of 3 mm is suggested.

A heat sink for cooling computer chips is fabricated from

copper (k, = 400 W/m-K), with machined microchan-
nels passing a cooling fluid for which 7 =25 C and
h = 30,000 W/m?- K. The lower side of the sink experi-
ences no heat removal, and a preliminary heat sink design
calls for dimensions of a = b = w, = w;= 200 um. A
symmetrical element of the heat path from the chip to the
fluid is shown in the inset.

—Sink, k;

~—+—Microchannel -

B

nsulation

(a) Using the symmetrical element with a square nodal
network of Ax = Ay = 100 wm, determine the corre-
sponding temperature field and the heat rate ¢’ to the
coolant per unit channel length (W/m) for a maximum
allowable chip temperature 7, .« =75 C. Estimate
the corresponding thermal resistance between the
chip surface and the fluid, R;._;(m-K/W). What is
the maximum allowable heat dissipation for a chip
that measures 10 mm X 10 mm on a side?
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(b) The grid spacing used in the foregoing finite-difference
solution is coarse, resulting in poor precision for
the temperature distribution and heat removal rate.
Investigate the effect of grid spacing by consider-
ing spatial increments of 50 and 25 um.

(c) Consistent with the requirement that a + b = 400 wm,
can the heat sink dimensions be altered in a manner

that reduces the overall thermal resistance?

A plate (k=10W/m-K) is stiffened by a series of lon-

Plate

gitudinal ribs having a rectangular cross section with
length L = 8 mm and width w = 4 mm. The base of the
plate is maintained at a uniform temperature 7, =
45 C, while the rib surfaces are exposed to air at a tem-
perature of 7., = 25 C and a convection coefcient of
h = 600 W/m*-K.

—

—_—>
T, h
I
|
Rib I
I T w
|
|
|
—>X
L

ot

(a) Using a finite-difference method with Ax = Ay =
2mm and a total of 5 X 3 nodal points and regions,
estimate the temperature distribution and the heat
rate from the base. Compare these results with those
obtained by assuming that heat transfer in the rib is
one-dimensional, thereby approximating the behav-
ior of a fin.

(b) The grid spacing used in the foregoing finite-
difference solution is coarse, resulting in poor pre-
cision for estimates of temperatures and the heat
rate. Investigate the effect of grid refinement by
reducing the nodal spacing to Ax = Ay = 1 mm (a
9 X 3 grid) considering symmetry of the center line.
(c) Investigate the nature of two-dimensional conduc-
tion in the rib and determine a criterion for which the
one-dimensional approximation is reasonable. Do so
by extending your finite-difference analysis to deter-
mine the heat rate from the base as a function of the
length of the rib for the range 1.5 = L/w = 10, keep-
ing the length L constant. Compare your results with
those determined by approximating the rib as a fin.

The bottom half of an I-beam providing support for a

furnace roof extends into the heating zone. The web is
well insulated, while the flange surfaces experience



274

4.84

Chapter 4 m Two-Dimensional, Steady-State Conduction

convection with hot gases at 7,, = 400 C and a convec-
tion coefficient of 4 = 150 W/m?- K. Consider the
symmetrical element of the flange region (inset a),
assuming that the temperature distribution across the
web is uniform at 7, = 100 C. The beam thermal con-
ductivity is 10 W/m-K, and its dimensions are
wy = 80mm, w,, = 30 mm, and L = 30 mm.

Assume

funiform

vﬁL E%Uniform ?

R
(a) T, h

(a) Calculate the heat transfer rate per unit length to
the beam using a 5 X 4 nodal network.

(b) Is it reasonable to assume that the temperature dis-
tribution across the web—flange interface is uni-
form? Consider the L-shaped domain of inset (b)
and use a fine grid to obtain the temperature distri-
bution across the web—flange interface. Make the
distance w, = w,, /2.

A long bar of rectangular cross section is 60 mm X
90mm on a side and has a thermal conductivity of
1 W/m-K. One surface is exposed to a convection
process with air at 100 C and a convection coefcient
of 100 W/m?- K, while the remaining surfaces are main-
tained at 50 C.

T,=50°C

(a) Using a grid spacing of 30 mm and the Gauss-Seidel
iteration method, determine the nodal temperatures
and the heat rate per unit length normal to the page
into the bar from the air.

(b) | Determine the effect of grid spacing on the temper-
ature field and heat rate. Specifically, consider a
grid spacing of 15 mm. For this grid, explore the
effect of changes in / on the temperature field and
the isotherms.

4.85 A long trapezoidal bar is subjected to uniform tempera-

tures on two surfaces, while the remaining surfaces are
well insulated. If the thermal conductivity of the mate-
rial is 20 W/m- K, estimate the heat transfer rate per unit
length of the bar using a finite-difference method. Use
the Gauss—Seidel method of solution with a space incre-

ment of 10 mm.
- /Insulation

50 mm

T,=100°C |« 30 mm—>|

Small-diameter electrical heating elements dissipating
50 W/m (length normal to the sketch) are used to heat a
ceramic plate of thermal conductivity 2 W/m-K. The
upper surface of the plate is exposed to ambient air at
30 C with a convection coefcient of 100 W/m 2-K,
while the lower surface is well insulated.

Air

T,

o1

h
Heating elementj

Ceramic plate T

. . b

m —24mm— —se— — 24 mm—>

(a) Using the Gauss—Seidel method with a grid spac-
ing of Ax = 6 mm and Ay = 2 mm, obtain the tem-
perature distribution within the plate.

(b) Using the calculated nodal temperatures, sketch
four isotherms to illustrate the temperature distri-
bution in the plate.

(c) Calculate the heat loss by convection from the
plate to the fluid. Compare this value with the ele-
ment dissipation rate.
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(d) What advantage, if any, is there in not making
Ax = Ay for this situation?

(e)| With Ax = Ay = 2 mm, calculate the temperature
field within the plate and the rate of heat transfer
from the plate. Under no circumstances may the
temperature at any location in the plate exceed
400 C. Would this limit be exceeded if the airow
were terminated and heat transfer to the air were by
natural convection with # = 10 W/m?-K?

Special Applications: Finite Element Analysis

A straight fin of uniform cross section is fabricated

af

from a material of thermal conductivity k = 5 W/m-K,
thickness w = 20 mm, and length L = 200 mm. The fin
is very long in the direction normal to the page. The
base of the fin is maintained at 7}, = 200 C, and the tip
condition allows for convection (case A of Table 3.4),
with & =500 W/m*K and T., = 25 C.

T. =100°C
h =500 W/m?K

!
i / T h

1 |

w =20 mm L =200 mm

T, = 200°C k=5 W/m-K

L T, h

(a) Assuming one-dimensional heat transfer in the fin,
calculate the fin heat rate, qf' (W/m), and the tip
temperature 7;. Calculate the Biot number for the
fin to determine whether the one-dimensional
assumption is valid.

(b) Using the finite-element method of FEHT, perform a
two-dimensional analysis on the fin to determine the
fin heat rate and tip temperature. Compare your
results with those from the one-dimensional, analyti-
cal solution of part (a). Use the View/Temperature
Contours option to display isotherms, and discuss
key features of the corresponding temperature field
and heat flow pattern. Hint: In drawing the outline of
the fin, take advantage of symmetry. Use a fine mesh
near the base and a coarser mesh near the tip. Why?

(c) Validate your FEHT model by comparing predic-
tions with the analytical solution for a fin with
thermal conductivities of k= 50W/m-K and
500 W/m-K. Is the one-dimensional heat transfer
assumption valid for these conditions?
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Consider the long rectangular bar of Problem 4.84 with

the prescribed boundary conditions.

(a) Using the finite-element method of FEHT, determine
the temperature distribution. Use the View/Tempera-
ture Contours command to represent the isotherms.
Identify significant features of the distribution.

(b) Using the View/Heat Flows command, calculate
the heat rate per unit length (W/m) from the bar to
the airstream.

(c) Explore the effect on the heat rate of increasing the
convection coefficient by factors of two and three.
Explain why the change in the heat rate is not pro-
portional to the change in the convection coefficient.

Consider the long rectangular rod of Problem 4.53,

which experiences uniform heat generation while its
surfaces are maintained at a fixed temperature.

(a) Using the finite-element method of FEHT, determine
the temperature distribution. Use the View/Tempera-
ture Contours command to represent the isotherms.
Identify significant features of the distribution.

(b) With the boundary conditions unchanged, what
heat generation rate will cause the midpoint tem-
perature to reach 600 K?

Consider the symmetrical section of the flow channel of

Problem 4.57, with the prescribed values of ¢, k, T,
Tw ., hi, and h,,. Use the finite-element method of FEHT
to obtain the following results.

(a) Determine the temperature distribution in the sym-
metrical section, and use the View/Temperature
Contours command to represent the isotherms.
Identify significant features of the temperature dis-
tribution, including the hottest and coolest regions
and the region with the steepest gradients. Describe
the heat flow field.

(b) Using the View/Heat Flows command, calculate
the heat rate per unit length (W/m) from the outer
surface A to the adjacent fluid.

(c) Calculate the heat rate per unit length from the
inner fluid to surface B.

(d) Verify that your results are consistent with an over-
all energy balance on the channel section.

The hot-film heat flux gage shown schematically may

be used to determine the convection coefficient of an
adjoining fluid stream by measuring the electric power
dissipation per unit area, P/ (W/m?), and the average
surface temperature, T, of the film. The power dissi-
pated in the film is transferred directly to the fluid by
convection, as well as by conduction into the substrate.
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If substrate conduction is negligible, the gage measure-
ments can be used to determine the convection coeffi-
cient without application of a correction factor. Your
assignment is to perform a two-dimensional, steady-
state conduction analysis to estimate the fraction of the
power dissipation that is conducted into a 2-mm-thick
quartz substrate of width W = 40 mm and thermal con-
ductivity k = 1.4 W/m-K. The thin, hot-film gage has a

(b) | Determine the effect of grid spacing on the tem-
perature field and heat loss per unit length to the
air. Specifically, consider a grid spacing of 25 mm
and plot appropriately spaced isotherms on a
schematic of the system. Explore the effect of
changes in the convection coefficients on the tem-
perature field and heat loss.

width of w = 4 mm and operates at a uniform power Electronic devices dissipating electrical power can be

dissipation of 5000 W/m?. Consider cases for which the
uid temperature is 25 C and the convection coefcient
is 500, 1000, and 2000 W/m?*- K.

[

Hot-thin film,
Fluid P;=5000 W/m? |
T h Quartz substrate _~ i
—_— k=1.4 W/m-K
. 2 mm / F*w =4 mm—4

4.92

—>

|

4 mm

e =
L7W:4Omm4" I e # f

A ;
HW/Z w2

v

Use the finite-element method of FEHT to analyze a
symmetrical half-section of the gage and the quartz
substrate. Assume that the lower and end surfaces of
the substrate are perfectly insulated, while the upper
surface experiences convection with the fluid.

(a) Determine the temperature distribution and the con-
duction heat rate into the region below the hot film
for the three values of h. Calculate the fractions of
electric power dissipation represented by these
rates. Hint: Use the View/Heat Flow command to
find the heat rate across the boundary elements.

(b) Use the View/Temperature Contours command to
view the isotherms and heat flow patterns. Describe
the heat flow paths, and comment on features of the
gage design that influence the paths. What limita-
tions on applicability of the gage have been
revealed by your analysis?

Consider the system of Problem 4.54. The interior sur-
face is exposed to hot gases at 350 C with a convection
coefficient of 100 W/m?-K, while the exterior surface
experiences convection with air at 25 C and a convec-
tion coefficient of 5 W/m?-K.

(a) Using a grid spacing of 75 mm, calculate the temper-
ature field within the system and determine the heat
loss per unit length by convection from the outer sur-
face of the flue to the air. Compare this result with
the heat gained by convection from the hot gases to
the air.

cooled by conduction to a heat sink. The lower surface
of the sink is cooled, and the spacing of the devices w,,
the width of the device w,, and the thickness L and ther-
mal conductivity k of the heat sink material each affect
the thermal resistance between the device and the
cooled surface. The function of the heat sink is to
spread the heat dissipated in the device throughout the
sink material.

f—w, = 48 mm —>] Device, T, = 85°C
e, = 18 mm : .

LSink material,
k =300 W/m-K

Cooled surface, T, = 25°C

(a) Beginning with the shaded symmetrical element,
use a coarse (5 X 5) nodal network to estimate the
thermal resistance per unit depth between the device
and lower surface of the sink, R;, ; (m-K/W). How
does this value compare with thermal resistances
based on the assumption of one-dimensional con-
duction in rectangular domains of (i) width w, and
length L and (ii) width w, and length L?

(b) Using nodal networks with grid spacings three and
five times smaller than that in part (a), determine
the effect of grid size on the precision of the ther-
mal resistance calculation.

(c) Using the finer nodal network developed for
part (b), determine the effect of device width on the
thermal resistance. Specifically, keeping w, and L
fixed, find the thermal resistance for values of
wyalw, = 0.175, 0.275, 0.375, and 0.475.

Consider one-dimensional conduction in a plane

composite wall. The exposed surfaces of materials A
and B are maintained at 7, = 600 K and 7, = 300 K,
respectively. Material A, of thickness L, = 20 mm,
has a temperature-dependent thermal conductivity of
k,=k,[1 + a«(T—T,)], where k,=44W/m-K,
a=0.008K !, T,=300K, and T is in kelvins.
Material B is of thickness L, = 5 mm and has a ther-
mal conductivity of k, = 1 W/m-K.
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/ka:ka(T) /kb

T, = 600 K— T, =300 K
A B
L, [ [
x La La + Lb
(a) Calculate the heat flux through the composite wall

by assuming material A to have a uniform thermal
conductivity evaluated at the average temperature
of the section.

(b) Using a space increment of 1 mm, obtain the finite-
difference equations for the internal nodes and
calculate the heat flux considering the temperature-
dependent thermal conductivity for Material A. If
the IHT software is employed, call-up functions
from Tools/Finite-Difference Equations may be used
to obtain the nodal equations. Compare your result
with that obtained in part (a).

(c) As an alternative to the finite-difference method of
part (b), use the finite-element method of FEHT to
calculate the heat flux, and compare the result with
that from part (a). Hint: In the Specify/Material
Properties box, properties may be entered as a func-
tion of temperature (7'), the space coordinates (x, y),
or time (7). See the Help section for more details.

A platen of thermal conductivity k = 15W/m-K is

heated by flow of a hot fluid through channels of width
L = 20mm, with T.,; = 200°C and h; = 500 W/m?-K.
The upper surface of the platen is used to heat a process
fluid at T, = 25°C with a convection coefficient of
h, = 250 W/m?+K. The lower surface of the platen is
insulated. To heat the process fluid uniformly, the tem-
perature of the platen’s upper surface must be uniform
to within 5°C. Use a finite-difference method, such as
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that of IHT, or the finite-element method of FEHT to
obtain the following results.

Fluid 7..,=25°C

00,0

h, = 250 W/m?K
—>
Temperature
rfuniformity of 5°C —ﬂ Platen,
! required : k i (leg W/m-K
T 7
L I | Heating channel
— h; = 500 W/m?K
s NE
L] |
L2 ! !
T } ( "= Insulation
| w |

(a) Determine the maximum allowable spacing W
between the channel centerlines that will satisfy the
specified temperature uniformity requirement.

(b) What is the corresponding heat rate per unit length
from a flow channel?

Consider the cooling arrangement for the very large-scale

integration (VLSI) chip of Problem 4.93. Use the finite-
element method of FEHT to obtain the following results.

(a) Determine the temperature distribution in the chip-
substrate system. Will the maximum temperature
exceed 85 C?

(b) Using the FEHT model developed for part (a),
determine the volumetric heating rate that yields a
maximum temperature of 85 C.

(c) What effect would reducing the substrate thickness
have on the maximum operating temperature? For a
volumetric generation rate of g = 107 W/m’, reduce
the thickness of the substrate from 12 to 6 mm, keep-
ing all other dimensions unchanged. What is the max-
imum system temperature for these conditions? What
fraction of the chip power generation is removed by
convection directly from the chip surface?
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In our treatment of conduction we have gradually considered more complicated condi-
tions. We began with the simple case of one-dimensional, steady-state conduction with no
internal generation, and we subsequently considered more realistic situations involving
multidimensional and generation effects. However, we have not yet considered situations
for which conditions change with time.

We now recognize that many heat transfer problems are time dependent. Such unsteady,
or transient, problems typically arise when the boundary conditions of a system are changed.
For example, if the surface temperature of a system is altered, the temperature at each point
in the system will also begin to change. The changes will continue to occur until a steady-
state temperature distribution is reached. Consider a hot metal billet that is removed from a
furnace and exposed to a cool airstream. Energy is transferred by convection and radiation
from its surface to the surroundings. Energy transfer by conduction also occurs from the
interior of the metal to the surface, and the temperature at each point in the billet decreases
until a steady-state condition is reached. The final properties of the metal will depend signif-
icantly on the time-temperature history that results from heat transfer. Controlling the heat
transfer is one key to fabricating new materials with enhanced properties.

Our objective in this chapter is to develop procedures for determining the time depen-
dence of the temperature distribution within a solid during a transient process, as well as
for determining heat transfer between the solid and its surroundings. The nature of the pro-
cedure depends on assumptions that may be made for the process. If, for example, tempera-
ture gradients within the solid may be neglected, a comparatively simple approach, termed
the lumped capacitance method, may be used to determine the variation of temperature
with time. The method is developed in Sections 5.1 through 5.3.

Under conditions for which temperature gradients are not negligible, but heat transfer
within the solid is one-dimensional, exact solutions to the heat equation may be used to
compute the dependence of temperature on both location and time. Such solutions are con-
sidered for nite solids (plane walls, long cylinders and spheres) in Sections 5.4 through 5.6
and for semi-innite solids in Section 5.7. Section 5.8 presents the transient thermal
response of a variety of objects subject to a step change in either surface temperature or
surface heat flux. In Section 5.9, the response of a semi-infinite solid to periodic heating
conditions at its surface is explored. For more complex conditions, finite-difference or
finite-element methods must be used to predict the time dependence of temperatures within
the solid, as well as heat rates at its boundaries (Section 5.10).

3.1 The Lumped Capacitance Method

A simple, yet common, transient conduction problem is one for which a solid experiences
a sudden change in its thermal environment. Consider a hot metal forging that is initially at
a uniform temperature 7; and is quenched by immersing it in a liquid of lower temperature
T., < T; (Figure 5.1). If the quenching is said to begin at time ¢ = 0, the temperature of the
solid will decrease for time ¢ > 0, until it eventually reaches T.,.. This reduction is due to
convection heat transfer at the solid—liquid interface. The essence of the lumped capaci-
tance method is the assumption that the temperature of the solid is spatially uniform at any
instant during the transient process. This assumption implies that temperature gradients
within the solid are negligible.
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E . =

out = 9conv

== Ficure 5.1  Cooling of a hot metal
forging.

From Fourier’s law, heat conduction in the absence of a temperature gradient implies the
existence of infinite thermal conductivity. Such a condition is clearly impossible. However,
the condition is closely approximated if the resistance to conduction within the solid is
small compared with the resistance to heat transfer between the solid and its surroundings.
For now we assume that this is, in fact, the case.

In neglecting temperature gradients within the solid, we can no longer consider the
problem from within the framework of the heat equation, since the heat equation is a differ-
ential equation governing the spatial temperature distribution within the solid. Instead, the
transient temperature response is determined by formulating an overall energy balance on
the entire solid. This balance must relate the rate of heat loss at the surface to the rate of
change of the internal energy. Applying Equation 1.12c to the control volume of Figure
5.1, this requirement takes the form

~Eou = Eg (5.1)
or
—hA(T - T,) = pVe 4T (5.2)
dt
Introducing the temperature difference
0=T-T1, (5.3)

and recognizing that (d0/dt) = (dT/dt) if T, is constant, it follows that

pveds _ _
hA, dt

Separating variables and integrating from the initial condition, for which =0 and

T(0) = T,, we then obtain
Vi 0 t
pVe f do _ f dt
hA Jg 0 0

0.=T — T, (5.4)

where
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Evaluating the integrals, it follows that

pVe 0,
b; _ 5.5
na, "o ! (5-5)
or
6 T-T, hA
6, T,—T. CXP[ (ch>] G0

Equation 5.5 may be used to determine the time required for the solid to reach some tem-
perature T, or, conversely, Equation 5.6 may be used to compute the temperature reached
by the solid at some time 7.

The foregoing results indicate that the difference between the solid and fluid tempera-
tures must decay exponentially to zero as ¢ approaches infinity. This behavior is shown in
Figure 5.2. From Equation 5.6 it is also evident that the quantity (pVc/hA,) may be inter-
preted as a thermal time constant expressed as

(1L —
Tl—< hAs>(pVC) R.C, (5.7)

where, from Equation 3.9, R, is the resistance to convection heat transfer and C, is the
lumped thermal capacitance of the solid. Any increase in R, or C, will cause a solid to
respond more slowly to changes in its thermal environment. This behavior is analogous
to the voltage decay that occurs when a capacitor is discharged through a resistor in an
electrical RC circuit.

To determine the total energy transfer Q occurring up to some time ¢, we simply write

t t
szqmszem
0 0

FIGURE 5.2 Transient temperature

response of lumped capacitance solids for
t different thermal time constants 7,.
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Substituting for 6 from Equation 5.6 and integrating, we obtain

Q=4pwg@[1—eq<—ﬁ)] (5.8a)

The quantity Q is, of course, related to the change in the internal energy of the solid, and
from Equation 1.12b

—0=AE, (5.8b)

For quenching, Q is positive and the solid experiences a decrease in energy. Equations 5.5,
5.6, and 5.8a also apply to situations where the solid is heated (@ < 0), in which case Q is
negative and the internal energy of the solid increases.

2.2 Validity of the Lumped Capacitance Method

From the foregoing results it is easy to see why there is a strong preference for using the
lumped capacitance method. It is certainly the simplest and most convenient method that
can be used to solve transient heating and cooling problems. Hence it is important to deter-
mine under what conditions it may be used with reasonable accuracy.

To develop a suitable criterion consider steady-state conduction through the plane wall
of area A (Figure 5.3). Although we are assuming steady-state conditions, the following cri-
terion is readily extended to transient processes. One surface is maintained at a temperature
T} and the other surface is exposed to a fluid of temperature T, < T;,. The temperature of
this surface will be some intermediate value T ,, for which T,, < T\, < T} ;. Hence under
steady-state conditions the surface energy balance, Equation 1.13, reduces to

BT =10 = AT, ~ T

where k is the thermal conductivity of the solid. Rearranging, we then obtain

Ts,l - Ts,2 _ (L/M) _ Rt,cond _ hfl, =

Bi 5.9
T,—T. (/hA) Ry Kk &)

FiGure 5.3  Effect of Biot number on steady-state temperature
distribution in a plane wall with surface convection.
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The quantity (hL/k) appearing in Equation 5.9 is a dimensionless parameter. 1t is
termed the Biot number, and it plays a fundamental role in conduction problems that
involve surface convection effects. According to Equation 5.9 and as illustrated in Figure
5.3, the Biot number provides a measure of the temperature drop in the solid relative to the
temperature difference between the solid’s surface and the fluid. From Equation 5.9, it is
also evident that the Biot number may be interpreted as a ratio of thermal resistances. In
particular, if Bi <1, the resistance to conduction within the solid is much less than the
resistance to convection across the uid boundary layer. Hence, the assumption of a uni-
Sform temperature distribution within the solid is reasonable if the Biot number is small.

Although we have discussed the Biot number in the context of steady-state conditions,
we are reconsidering this parameter because of its significance to transient conduction
problems. Consider the plane wall of Figure 5.4, which is initially at a uniform temperature
T; and experiences convection cooling when it is immersed in a fluid of 7., < T,. The prob-
lem may be treated as one-dimensional in x, and we are interested in the temperature varia-
tion with position and time, 7(x, ). This variation is a strong function of the Biot number,
and three conditions are shown in Figure 5.4. Again, for Bi < 1 the temperature gradients
in the solid are small and the assumption of a uniform temperature distribution, 7(x, ) =
T(r) is reasonable. Virtually all the temperature difference is between the solid and the
fluid, and the solid temperature remains nearly uniform as it decreases to 7. For moderate
to large values of the Biot number, however, the temperature gradients within the solid
are significant. Hence 7' = T(x, 7). Note that for Bi > 1, the temperature difference across
the solid is much larger than that between the surface and the fluid.

We conclude this section by emphasizing the importance of the lumped capacitance
method. Its inherent simplicity renders it the preferred method for solving transient heating
and cooling problems. Hence, when confronted with such a problem, the very rst thing
that one should do is calculate the Biot number. If the following condition is satisfied

hL,

=
Tk

<0.1 (5.10)

the error associated with using the lumped capacitance method is small. For convenience, it
is customary to define the characteristic length of Equation 5.10 as the ratio of the solid’s

! ! T
/Tm, h | [T 0=T 1 0=7,4 |
i

T | i N— T
I

[ ]
[ ]

|
L T. T.

T. h
|L i -L L L "L -L L
B l_> Bi<< 1 Bi~1 Bi>>1
x T~ T(t) T=T, 1) T=T, 1)

FIGURE 5.4  Transient temperature distributions for different Biot numbers in a plane wall
symmetrically cooled by convection.
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volume to surface area L, = V/A,. Such a definition facilitates calculation of L, for solids of
complicated shape and reduces to the half-thickness L for a plane wall of thickness 2L
(Figure 5.4), to r,/2 for a long cylinder, and to r,/3 for a sphere. However, if one wishes to
implement the criterion in a conservative fashion, L, should be associated with the length
scale corresponding to the maximum spatial temperature difference. Accordingly, for a
symmetrically heated (or cooled) plane wall of thickness 2L, L. would remain equal to the
half-thickness L. However, for a long cylinder or sphere, L. would equal the actual radius
r,, rather than r,/2 or r,/3.

Finally, we note that, with L, = V/A,, the exponent of Equation 5.6 may be expressed as

hASl‘_ ht _thkt_thCLI‘

pVe pcL,  k PC L2k I?

or
hA t
" = Bi-Fo (5.11)
pVe
where
Fo= Z—; (5.12)

is termed the Fourier number. It is a dimensionless time, which, with the Biot number, char-
acterizes transient conduction problems. Substituting Equation 5.11 into 5.6, we obtain

0 T—T, _ .
E_Ti—Too exp(—Bi- Fo) (5.13)

ExXAMPLE 5.1

A thermocouple junction, which may be approximated as a sphere, is to be used for tempera-
ture measurement in a gas stream. The convection coefficient between the junction surface
and the gas is & = 400 W/m*-K, and the junction thermophysical properties are k = 20
W/m-K, ¢ = 400 J/kg-K, and p = 8500 kg/m’. Determine the junction diameter needed for
the thermocouple to have a time constant of 1 s. If the junction is at 25°C and is placed in a
gas stream that is at 200°C, how long will it take for the junction to reach 199°C?

SOLUTION

Known: Thermophysical properties of thermocouple junction used to measure tempera-
ture of a gas stream.

Find:
1. Junction diameter needed for a time constant of 1 s.

2. Time required to reach 199°C in gas stream at 200°C.
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Schematic:
Leads
T, = 200°C
h = 400 W/m?2K Thermocouple )| k = 20 W/m+K
junction ¢ =400 J/kgK
—> T,=25°C J p=8500 kg/m?
—
Gas stream l«—D—»|
Assumptions:

1. Temperature of junction is uniform at any instant.

2. Radiation exchange with the surroundings is negligible.
3. Losses by conduction through the leads are negligible.
4. Constant properties.

Analysis:

1. Because the junction diameter is unknown, it is not possible to begin the solution by
determining whether the criterion for using the lumped capacitance method, Equation
5.10, is satisfied. However, a reasonable approach is to use the method to find the
diameter and to then determine whether the criterion is satisfied. From Equation 5.7
and the fact that A, = 7D? and V = 7D?/6 for a sphere, it follows that

1 paD’
= X
T hwD? 6 ¢

Rearranging and substituting numerical values,

_Oh1, _ 6 X400 W/m?-K X 1s

- . =7.06X10*m <
p 8500 kg/m® X 400 J/kg - K

With L. = r,/3 it then follows from Equation 5.10 that

_ h(r,/3) _ 400 W/m?-K X 3.53 X 10"*m

=235x1073
k 3 X 20 W/m-K 3510

Bi

Accordingly, Equation 5.10 is satisfied (for L, = r,, as well as for L. = r,/3) and the
lumped capacitance method may be used to an excellent approximation.

2. From Equation 5.5 the time required for the junction to reach 7= 199°C is
p(wD*16)c T;— T, pDc., T;— T,
t= In = In
h(7D?) Tr-7, ©6n T-T,
= 8500 kg/m?® X 7.06 X 10~*m X 400 J/kg - Kln 25 — 200

6 X 400 W/m? - K 199 — 200
t=52s~>51, <

Commenis: Heat transfer due to radiation exchange between the junction and the sur-
roundings and conduction through the leads would affect the time response of the junction
and would, in fact, yield an equilibrium temperature that differs from 7.

_
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2.3 General Lumped Capacitance Analysis

Although transient conduction in a solid is commonly initiated by convection heat transfer to
or from an adjoining fluid, other processes may induce transient thermal conditions within the
solid. For example, a solid may be separated from large surroundings by a gas or vacuum. If
the temperatures of the solid and surroundings differ, radiation exchange could cause the
internal thermal energy, and hence the temperature, of the solid to change. Temperature
changes could also be induced by applying a heat flux at a portion, or all, of the surface or by
initiating thermal energy generation within the solid. Surface heating could, for example, be
applied by attaching a film or sheet electrical heater to the surface, while thermal energy
could be generated by passing an electrical current through the solid.

Figure 5.5 depicts the general situation for which thermal conditions within a solid may
be influenced simultaneously by convection, radiation, an applied surface heat flux, and
internal energy generation. It is presumed that, initially (r = 0), the temperature of the solid
T; differs from that of the fluid 7, and the surroundings 7, and that both surface and volu-
metric heating (g and §) are initiated. The imposed heat flux ¢} and the convection—radiation
heat transfer occur at mutually exclusive portions of the surface, A, and A, respectively,
and convection-radiation transfer is presumed to be from the surface. Moreover, although
convection and radiation have been prescribed for the same surface, the surfaces may, in
fact, differ (A,. # A,,). Applying conservation of energy at any instant ¢, it follows from
Equation 1.12c that

" " " aT
qus,h + Eg - (qconv + Qrad)As(c,r) = pVCE (514)

or, from Equations 1.3a and 1.7,

ar

qus,h + Eg - [h(T - Too) + 80(T4 - T:ur)]As(c,r) = pVCE

(5.15)

Equation 5.15 is a nonlinear, first-order, nonhomogeneous, ordinary differential equa-
tion that cannot be integrated to obtain an exact solution.! However, exact solutions may be
obtained for simplified versions of the equation.

Surroundings

TSUV
pc, V,TO) =T,

I I q"
1 1 rad
I I
I |/
I I

" 1 .. |

G B E | T, h
I —>
1 1 qCOﬂV
I I
F ! Ficure 5.5  Control surface for general lumped
A Aste, 1) capacitance analysis.

'An approximate, finite-difference solution may be obtained by discretizing the time derivative (Section 5.10)
and marching the solution out in time.
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5.3.1 Radiation Only

If there is no imposed heat flux or generation and convection is either nonexistent (a vacuum)
or negligible relative to radiation, Equation 5.15 reduces to

pVe % = — A, o(T* — T (5.16)

Separating variables and integrating from the initial condition to any time ¢, it follows that

Aot (T ar
Ve Jodt—JTi T (5.17)

Evaluating both integrals and rearranging, the time required to reach the temperature
T becomes

Toe + T

sur
T —T

pVe
t= In
4‘9As,rO-T3ur sur

+2 [taln1 <Tir) —tan”! (72“)]} (5.18)

This expression cannot be used to evaluate 7 explicitly in terms of ¢, T;, and T, nor does it
readily reduce to the limiting result for 7, = O (radiation to deep space). However, return-
ing to Equation 5.17, its solution for 7, = 0 yields

_ pVe [1 1
= 38AS,F0<T3 - T*) (5.19)

Tsur + 7"!

Toe — T;

sur 1

—In

3.3.2 Negligible Radiation

An exact solution to Equation 5.15 may also be obtained if radiation may be neglected and
all quantities (other than 7, of course) are independent of time. Introducing a temperature
difference 6 = T — T.,, where df/dt = dT/dt, Equation 5.15 reduces to a linear, first-order,
nonhomogeneous differential equation of the form

do
—+al —b=0 5.20
e (5.20)

where a = (hA, /pVc) and b=[(q/A,, + E,)lpVc]. Although Equation 5.20 may be solved
by summing its homogeneous and particular solutions, an alternative approach is to elimi-
nate the nonhomogeneity by introducing the transformation

b

0'=0—" (5.21)
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Recognizing that df'/dt = d6/dt, Equation 5.21 may be substituted into (5.20) to yield

do’
dt

+af =0 (5.22)

Separating variables and integrating from O to 7 (0] to 0"), it follows that

% = exp(—at) (5.23)
or substituting for 0’ and 0,
T—T, — (bla)
= —at 5.24
T,—T.— (blay P (5.24)
Hence
;:: 7]:‘: = exp(—at) + Tib—/aTw [1 —exp(—an)] (5.25)

As it must, Equation 5.25 reduces to Equation 5.6 when b = 0 and yields 7 = T;at r = 0. As
t — o, Equation 5.25 reduces to (T — T.,) = (b/a), which could also be obtained by perform-
ing an energy balance on the control surface of Figure 5.5 for steady-state conditions.

3.3.3 Convection Only with Variable Convection Coefficient

In some cases, such as those involving free convection or boiling, the convection coefficient
h varies with the temperature difference between the object and the fluid. In these situations,
the convection coefficient can often be approximated with an expression of the form

h=CT—-T,) (5.26)

where 7 is a constant and the parameter C has units of W/m?-K" ", If radiation, surface
heating, and volumetric generation are negligible, Equation 5.15 may be written as

—C(T — TYA (T — T,) = —CA, (T — T..)*" = pVc ‘% (5.27)

Substituting 6 and df/dt = dT/dt into the preceding expression, separating variables and
integrating yields

0 nCA; 0} =iz
e Ve t+1 (5.28)

It can be shown that Equation 5.28 reduces to Equation 5.6 if the heat transfer coefficient is
independent of temperature, n = 0.

5.3.4 Additional Considerations

In some cases the ambient or surroundings temperature may vary with time. For example,
if the container of Figure 5.1 is insulated and of finite volume, the liquid temperature will
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increase as the metal forging is cooled. An analytical solution for the time-varying solid
(and liquid) temperature is presented in Example 11.8. As evident in Examples 5.2 through
5.4, the heat equation can be solved numerically for a wide variety of situations involving
variable properties or time-varying boundary conditions, internal energy generation rates,
or surface heating or cooling.

T | EXAMPLE 5.2

Consider the thermocouple and convection conditions of Example 5.1, but now allow for
radiation exchange with the walls of a duct that encloses the gas stream. If the duct walls are
at 400°C and the emissivity of the thermocouple bead is 0.9, calculate the steady-state tem-
perature of the junction. Also, determine the time for the junction temperature to increase
from an initial condition of 25°C to a temperature that is within 1°C of its steady-state value.

SOLUTION

Known: Thermophysical properties and diameter of the thermocouple junction used to
measure temperature of a gas stream passing through a duct with hot walls.

Find:
1. Steady-state temperature of the junction.

2. Time required for the thermocouple to reach a temperature that is within 1°C of its
steady-state value.

Schematic:

Hot duct wall,
T, = 400°C
AR Junction, T(r)
T., = 200°C 5 T;=25°C, D=0.7 mm
h = 400 W/m*K p = 8500 kg/m?
_ ¢ =400 Jikg-K
£ =0.9

Assumptions: Same as Example 5.1, but radiation transfer is no longer treated as negli-
gible and is approximated as exchange between a small surface and large surroundings.

Analysis:
1. For steady-state conditions, the energy balance on the thermocouple junction has the
form

E;, — Enut= 0

Recognizing that net radiation to the junction must be balanced by convection from the
junction to the gas, the energy balance may be expressed as

[80-(Tjur - T4) - h(T_ Too)]As =0
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Substituting numerical values, we obtain
T=218.7°C <

2. The temperature-time history, 7(¢), for the junction, initially at 7(0) = T; = 25°C, fol-
lows from the energy balance for transient conditions,

Ei - Eout = Est
From Equation 5.15, the energy balance may be expressed as

(T = T.) + eo(T* = T4)14, = pve ]
The solution to this first-order differential equation can be obtained by numerical inte-
gration, giving the result, 7(4.9 s) = 217.7°C. Hence, the time required to reach a tem-
perature that is within 1°C of the steady-state value is

t=49s. <

Comments:

1. The effect of radiation exchange with the hot duct walls is to increase the junction tem-
perature, such that the thermocouple indicates an erroneous gas stream temperature that
exceeds the actual temperature by 18.7°C. The time required to reach a temperature
that is within 1°C of the steady-state value is slightly less than the result of Example 5.1,
which only considers convection heat transfer. Why is this so?

2. The response of the thermocouple and the indicated gas stream temperature depend on the
velocity of the gas stream, which in turn affects the magnitude of the convection coef-
ficient. Temperature—time histories for the thermocouple junction are shown in the
following graph for values of 1 = 200, 400, and 800 W/m*- K.

260
S 220 —_—t
&~ /
£ 180 800
g 400
3 140 200
£ _ 2007
g 2]
< 100 h (W/m<:K)
o
3
5 60

20

0 2 4 6 8 10

Elapsed time, 7 (s)

The effect of increasing the convection coefficient is to cause the junction to indicate a
temperature closer to that of the gas stream. Further, the effect is to reduce the time
required for the junction to reach the near-steady-state condition. What physical expla-
nation can you give for these results?

3. The IHT software includes an integral function, Der (7, t), that can be used to represent the
temperature—time derivative and to integrate first-order differential equations.
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EXAMPLE 5.3

A 3-mm-thick panel of aluminum alloy (k=177 W/m-K, c¢=875J/kg K, and
p = 2770 kg/m’) is finished on both sides with an epoxy coating that must be cured at or
above T, = 150°C for at least 5 min. The production line for the curing operation involves
two steps: (1) heating in a large oven with air at 7., , = 175°C and a convection coefficient
of h, = 40 W/m*-K, and (2) cooling in a large chamber with air at 7, . = 25°C and a con-
vection coefficient of 4, = 10 W/m?-K. The heating portion of the process is conducted
over a time interval #,, which exceeds the time 7. required to reach 150°C by 5 min
(t, = t, + 300s). The coating has an emissivity of € = 0.8, and the temperatures of the
oven and chamber walls are 175 and 25°C, respectively. If the panel is placed in the oven at
an initial temperature of 25°C and removed from the chamber at a safe-to-fouch tempera-
ture of 37°C, what is the total elapsed time for the two-step curing operation?

SOLUTION
|

Known: Operating conditions for a two-step heating/cooling process in which a coated
aluminum panel is maintained at or above a temperature of 150°C for at least 5 min.

Find: Total time ¢, required for the two-step process.

Schematic:
TSUV,(} = 1750(: TSIJV,L‘ = 25DC
2L =3 mm —fe—>] ‘ -
RAS
h,, T..,=175°C L Epoxy, he, T, .=25°C
| =08 | t

Aluminum, 7(0) = 7; , = 25°C T(t) = 37°C

Step 1: Heating (0<r<t) Step 2: Cooling (r.< t<1,)
Assumptions:

1. Panel temperature is uniform at any instant.
2. Thermal resistance of epoxy is negligible.
3. Constant properties.

Analysis:  To assess the validity of the lumped capacitance approximation, we begin by
calculating Biot numbers for the heating and cooling processes.

_ h,L _ (40 W/m® - K)(0.0015 m)
k 177 W/m - K

Bi — hL _ (10 W/m? - K)(0.0015 m)
<k 177 W/m - K

Bi, =34x107*

=85%107°
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Hence the lumped capacitance approximation is excellent.

To determine whether radiation exchange between the panel and its surroundings
should be considered, the radiation heat transfer coefficient is determined from Equation
1.9. A representative value of 4, for the heating process is associated with the cure condi-
tion, in which case

hr,o = SU(TL‘ + ’Tsur,n)(Tcz‘ + Tzur,o)
=0.8 X 5.67 X 1078 W/m?- K*(423 + 448)K (423> + 448*)K>
=15 W/m?-K

Using 7. = 150°C with T, .= 25°C for the cooling process, we also obtain £, =
8.8 W/m?-K. Since the values of h,, and h, . are comparable to those of &, and A, respec-
tively, radiation effects must be considered.
With V= 2LA;and A, = A,, = 2A,, Equation 5.15 may be expressed as
(T = ) + oo (T = T4 = peL. 4T

Selecting a suitable time increment, Af, the equation may be integrated numerically to
obtain the panel temperature at t = Az, 2At, 3A¢, and so on. Selecting At = 10's, calcula-
tions for the heating process are extended to 7, = 7. + 300 s, which is 5 min beyond the
time required for the panel to reach T, = 150°C. At ¢, the cooling process is initiated and
continued until the panel temperature reaches 37°C at t = t,. The integration was performed
using /HT, and results of the calculations are plotted as follows:

200

|
t. 300 . 600 900 ¢, 1200
t(s)

~

The total time for the two-step process is
t, =989 s <
with intermediate times of ., = 124 s and 7, = 424 s.

Comments:

1. The duration of the two-step process may be reduced by increasing the convection
coefficients and/or by reducing the period of extended heating. The second option is
made possible by the fact that, during a portion of the cooling period, the panel
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temperature remains above 150°C. Hence, to satisfy the cure requirement, it is not
necessary to extend heating for as much as 5Smin from ¢ =r. If the convection
coefficients are increased to h, = h, = 100 W/m?-K and an extended heating period
of 300 s is maintained, the numerical integration yields ¢, = 58 s and 7, = 445 s. The
corresponding time interval over which the panel temperature exceeds 150°C
is Afiro150:0c) = 3068 (58 s =t = 3645). If the extended heating period is reduced to
294 s, the numerical integration yields 7, = 58s, t, = 439s, and Af;-50:c) = 300s.
Hence the total process time is reduced, while the curing requirement is still satisfied.

2. Generally, the accuracy of a numerical integration improves with decreasing At, but at
the expense of increased computation time. In this case, however, results obtained for
At = 1's are virtually identical to those obtained for Az = 10s, indicating that the
larger time interval is sufficient to accurately depict the temperature history.

3. The complete solution for this example is provided as a ready-to-solve model in the
Advanced section of IHT, using Models, Lumped Capacitance. The model can be used
to check the results of Comment 1 or to independently explore modifications of the
cure process.

4. If the Biot numbers were not small, it would be inappropriate to apply the lumped capac-
itance method. For moderate or large Biot numbers, temperatures near the solid’s center-
line would continue to increase for some time after the conclusion of heating, as thermal
energy near the solid’s surface propagates inward. The temperatures near the centerline
would subsequently reach a maximum and would then decrease to the steady-state value.
Correlations for the maximum temperature experienced at the panel’s centerline, along
with the time at which these maximum temperatures are reached, have been correlated
for a broad range of Bi), and Bi, values [1].

F

EXAMPLE 5.4

Air to be supplied to a hospital operating room is first purified by forcing it through a single-
stage compressor. As it travels through the compressor, the air temperature initially increases
due to compression, then decreases as it is returned to atmospheric pressure. Harmful
pathogen particles in the air will also be heated and subsequently cooled, and they will be
destroyed if their maximum temperature exceeds a lethal temperature 7,. Consider spherical
pathogen particles (D = 10 um, p = 900 kg/m®, ¢ = 1100 J/kg-K, and k = 0.2 W/m+K) that
are dispersed in unpurified air. During the process, the air temperature may be described by
an expression of the form T.,(f) = 125°C — 100°C- cos(2mt/t,), where 1, is the process time
associated with flow through the compressor. If 7, = 0.004 s, and the initial and lethal
pathogen temperatures are 7; = 25°C and T, = 220°C, respectively, will the pathogens be
destroyed? The value of the convection heat transfer coefficient associated with the pathogen
particles is 1 = 4600 W/m?- K.

SOLUTION
|

Known: Air temperature versus time, convection heat transfer coefficient, pathogen
geometry, size, and properties.
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Find: Whether the pathogens are destroyed for 7, = 0.004 s.

Schematic:
T.(1) = 125°C — IOOOC'COS(Zm/tP)
Airstream
h = 4600 W/m2:K
Pathogen
—_—
k= 0.2 Wm-K
—_—
¢ = 1100 J/kg-K
» = 900 kg/m3
4" D =10 ym i‘* T, = 220°C
Assumptions:

1. Constant properties.
2. Negligible radiation.

Analysis:  The Biot number associated with a spherical pathogen particle is

_ h(DI6) 4600 W/m*-K X (10 X 107° m/6)
k 0.2W/m-K

Bi

=0.038

Hence, the lumped capacitance approximation is valid and we may apply Equation 5.2.

dT _  hA;

dt pVe

(7= Tult)] = = -2 [T = 125°C + 100°C - cos(2mir, ) (1)
pc

The solution to this first-order differential equation may be obtained analytically, or by
numerical integration.

Numerical Integration A numerical solution of Equation 1 may be obtained by speci-
fying the initial particle temperature, 7}, and using /HT or an equivalent numerical solver to
integrate the equation. The plot of the numerical solution follows.

_. 250
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Inspection of the predicted pathogen temperatures yields
Thax = 212°C < 220°C
Hence, the pathogen is not destroyed. <

Analytical Solution Equation 1 is a linear nonhomogeneous differential equation,
therefore the solution can be found as the sum of a homogeneous and a particular solution,
T =T,+ T, The homogeneous part, T,, corresponds to the homogeneous differential
equation, dT;,/dt = —(6h/pcD)T,, which has the familiar solution, T, = ¢, exp(—6ht/pcD).
The particular solution, T, can then be found using the method of undetermined coeffi-
cients; for a nonhomogeneous term that includes a cosine function and a constant term, the
particular solution is assumed to be of the form T, = ¢, cos(2m/t,) + ¢, sin(2wt/t,) + c;.
Substituting this expression into Equation 1 yields values for the coefficients, resulting in

2mpeD
T, = 125°C — 100°C X A[cos(ztm) + o sin<2tm)] @)
P

P P

where

B (6hlpcD)?
(6hipcD)* + (2mlt,)?

The initial condition, 7(0) = T}, is then applied to the complete solution, 7= T, + T, to
yield ¢, = 100°C(A — 1). Thus, the particle temperature is

2apeD
T(r) = 125°C + 100°C 1 (A — 1) exp| — O ) — A| cos| 27t ) + ZTPL o[ 272 ) L (3)
pcD 2 6ht, I

To find the maximum pathogen temperature, we could differentiate Equation 3 and set the
result equal to zero. This yields a lengthy, implicit equation for the critical time 7. at
which the maximum temperature is reached. The maximum temperature may then be found
by substituting t = ¢, into Equation 3. Alternatively, Equation 3 can be plotted or 7(f) may
be tabulated to find

T,.. = 212°C < 220°C

Hence, the pathogen is not destroyed. <

Comments:
1. The analytical and numerical solutions agree, as they must.

2. As evident in the previous plot, the air and pathogen particles initially have the same
temperature, T; = 25°C. The pathogen thermal response lags that of the air since a tem-
perature difference must exist between the air and the particle in order for the pathogen
to be heated or cooled. As required by Equation 1 and as evident in the plot, the maxi-
mum particle temperature is reached when there is no temperature difference between
the air and the pathogen.
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3.

The maximum pathogen temperature may be increased by extending the duration of the
process. For a process time of 7, = 0.008 s, the air and pathogen particle temperatures
are as follows.

_ 250
S
=
s 200
5
©
g 150
§
b Pathogen
100
el
(S .
- Air
g 50
2
S
S0

0 0.002 0.004 0.006 0.008
Elapsed time, 7 (s)
The maximum particle temperature is now T, = 221°C > T, = 220°C, and the

pathogen would be killed. However, because the duration of the cycle is twice as long
as originally specified, approximately half of the air could be supplied to the operating
room compared to the 7, = 0.004 s case. A trade-off exists between the amount of air
that can be delivered to the operating room and its purity.

The maximum possible radiation heat transfer coefficient may be calculated based
on the extreme temperatures of the problem and by assuming a particle emissivity of
unity. Hence,

h’r,max = O-(Tmax + Tmin)(T2 + Tr2nin)

=5.67 X 10" W/m? - K* X (498 + 298)K X (498 + 298*)K? = 15.2 W/m? - K

Since h,.,.x < h, radiation heat transfer is negligible.

The Der(T, f) function of the IHT software was used to generate the numerical solution
for this problem. See Comment 3 of Example 5.2. If one is familiar with a numerical
solver such as 7HT, it is often much faster to obtain a numerical solution than an analyti-
cal solution, as is the case in this example. Moreover, if one seeks maximum or mini-
mum values of the dependent variable or variables, such as the pathogen temperature in
this example, it is often faster to determine the maxima or minima by inspection, rather
than with an analytical solution. However, analytical solutions often explicitly show
parameter dependencies and can provide insights that numerical solutions might obscure.

A time increment of Ar = 0.00001 s was used to generate the numerical solutions.
Generally, the accuracy of a numerical integration improves with decreasing At,
but at the expense of increased computation time. For this example, results for
At = 0.000005 s are virtually identical to those obtained for the larger time increment,
indicating that either increment is sufficient to accurately depict the temperature his-
tory and to determine the maximum particle temperature.

Assumption of instantaneous pathogen death at the lethal temperature is an approximation.
Pathogen destruction also depends on the duration of exposure to the high temperatures [2].
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2.4  Spatial Effects

Situations frequently arise for which the Biot number is not small, and we must cope with
the fact that temperature gradients within the medium are no longer negligible. Use of the
lumped capacitance method would yield incorrect results, so alternative approaches, pre-
sented in the remainder of this chapter, must be utilized.

In their most general form, transient conduction problems are described by the heat
equation, Equation 2.19, for rectangular coordinates or Equations 2.26 and 2.29, respec-
tively, for cylindrical and spherical coordinates. The solutions to these partial differential
equations provide the variation of temperature with both time and the spatial coordinates.
However, in many problems, such as the plane wall of Figure 5.4, only one spatial coordi-
nate is needed to describe the internal temperature distribution. With no internal generation
and the assumption of constant thermal conductivity, Equation 2.19 then reduces to

T 19T
Pty (5.29)

To solve Equation 5.29 for the temperature distribution 7(x, 7), it is necessary to specify
an initial condition and two boundary conditions. For the typical transient conduction prob-
lem of Figure 5.4, the initial condition is

T(x,0)=T, (5.30)
and the boundary conditions are
aT|
i 0 (5.31)
and
aT _ B
ka e hIT(L,t) — T.] (5.32)

Equation 5.30 presumes a uniform temperature distribution at time ¢ = 0; Equation 5.31
reflects the symmetry requirement for the midplane of the wall; and Equation 5.32
describes the surface condition experienced for time ¢ > 0. From Equations 5.29 through
5.32, it is evident that, in addition to depending on x and ¢, temperatures in the wall also
depend on a number of physical parameters. In particular

T=Tx,t,T, Ty L,k a,h) (5.33)

The foregoing problem may be solved analytically or numerically. These methods
will be considered in subsequent sections, but first it is important to note the advantages
that may be obtained by nondimensionalizing the governing equations. This may be done
by arranging the relevant variables into suitable groups. Consider the dependent variable
T. If the temperature difference 8 = T — T, is divided by the maximum possible temper-
ature difference 0; =T, — T,,, a dimensionless form of the dependent variable may be
defined as

0% =—= (5.34)
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Accordingly, 6* must lie in the range 0 = 6* = 1. A dimensionless spatial coordinate may
be defined as

=< (5.35)

r* EZJE Fo (5.36)

where r* is equivalent to the dimensionless Fourier number, Equation 5.12.
Substituting the definitions of Equations 5.34 through 5.36 into Equations 5.29 through
5.32, the heat equation becomes

0% _ 96*
=— 5.37
&x*2 dFo ( )
and the initial and boundary conditions become
*(x*,0) =1 (5.38)
0*
— =0 5.39
Ix™ |ve=0 -39
and
0*
— = —Bi 0*(1,r* 5.40
o L (1,7%) (5.40)

where the Biot number is Bi = hL/k. In dimensionless form the functional dependence may
now be expressed as

0* = f(x*, Fo, Bi) (5.41)

Recall that a similar functional dependence, without the x* variation, was obtained for the
lumped capacitance method, as shown in Equation 5.13.

Comparing Equations 5.33 and 5.41, the considerable advantage associated with cast-
ing the problem in dimensionless form becomes apparent. Equation 5.41 implies that for a
prescribed geometry, the transient temperature distribution is a universal function of x¥%,
Fo, and Bi. That is, the dimensionless solution has a prescribed form that does not depend
on the particular value of T}, T, L, k, e, or h. Since this generalization greatly simplifies the
presentation and utilization of transient solutions, the dimensionless variables are used
extensively in subsequent sections.

35 The Plane Wall with Convection

Exact, analytical solutions to transient conduction problems have been obtained for many
simplified geometries and boundary conditions and are well documented [3-6]. Several
mathematical techniques, including the method of separation of variables (Section 4.2),
may be used for this purpose, and typically the solution for the dimensionless temperature
distribution, Equation 5.41, is in the form of an infinite series. However, except for very
small values of the Fourier number, this series may be approximated by a single term, con-
siderably simplifying its evaluation.
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5.5.1 Exact Solution

Consider the plane wall of thickness 2L (Figure 5.6a). If the thickness is small relative to the
width and height of the wall, it is reasonable to assume that conduction occurs exclusively in
the x-direction. If the wall is initially at a uniform temperature, 7(x, 0) = T}, and is suddenly
immersed in a fluid of T, # T;, the resulting temperatures may be obtained by solving Equation
5.37 subject to the conditions of Equations 5.38 through 5.40. Since the convection conditions
for the surfaces at x* = =1 are the same, the temperature distribution at any instant must be
symmetrical about the midplane (x* = 0). An exact solution to this problem is of the form [4]

0* = i C, exp (—{2Fo) cos ({,x™) (5.42a)
n=1

where Fo = at/L?, the coefficient C,, is

B 4sin{,
"L+ sin (2,)

and the discrete values of £, (eigenvalues) are positive roots of the transcendental equation

(5.42b)

{,tan{, = Bi (5.42c¢)
The first four roots of this equation are given in Appendix B.3. The exact solution given by
Equation 5.42a is valid for any time, 0 = Fo = .
3.5.2 Approximate Solution

It can be shown (Problem 5.43) that for values of Fo > 0.2, the infinite series solution,
Equation 5.42a, can be approximated by the first term of the series, n = 1. Invoking this
approximation, the dimensionless form of the temperature distribution becomes

0* = C,exp (—{1Fo) cos ({;x™) (5.43a)
or
0* = 6% cos (£,x*) (5.43b)
where 6% = (T, — T,)/(T; — T.,) represents the midplane (x* = 0) temperature
67 = C, exp (—{iFo) (5.44)
Fﬂxy 0=T; ._r T, 0) = T;

B\]
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FIGURE 5.6  One-dimensional systems
with an initial uniform temperature

x subjected to sudden convection

L conditions: (a) Plane wall. (b) Infinite

(a) ) cylinder or sphere.

{2/ Graphical representations of the one-term approximations are presented in Section 5S.1.
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An important implication of Equation 5.43b is that the time dependence of the temperature
at any location within the wall is the same as that of the midplane temperature. The coeffi-
cients C; and ¢, are evaluated from Equations 5.42b and 5.42c, respectively, and are given
in Table 5.1 for a range of Biot numbers.

TABLE 5.1  Coefficients used in the one-term approximation to the series
solutions for transient one-dimensional conduction

Plane Wall Innite Cylinder Sphere
& & &

Bi° (rad) C, (rad) C, (rad) C,
0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030
0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060
0.03 0.1723 1.0049 0.2440 1.0075 0.2991 1.0090
0.04 0.1987 1.0066 0.2814 1.0099 0.3450 1.0120
0.05 0.2218 1.0082 0.3143 1.0124 0.3854 1.0149
0.06 0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
0.07 0.2615 1.0114 0.3709 1.0173 0.4551 1.0209
0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239
0.09 0.2956 1.0145 0.4195 1.0222 0.5150 1.0268
0.10 03111 1.0161 0.4417 1.0246 0.5423 1.0298
0.15 0.3779 1.0237 0.5376 1.0365 0.6609 1.0445
0.20 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592
0.25 0.4801 1.0382 0.6856 1.0598 0.8447 1.0737
0.30 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880
0.4 0.5932 1.0580 0.8516 1.0932 1.0528 1.1164
0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441
0.6 0.7051 1.0814 1.0184 1.1345 1.2644 1.1713
0.7 0.7506 1.0919 1.0873 1.1539 1.3525 1.1978
0.8 0.7910 1.1016 1.1490 1.1724 1.4320 1.2236
0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488
1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732
2.0 1.0769 1.1785 1.5994 1.3384 2.0288 1.4793
3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227
4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202
5.0 1.3138 1.2402 1.9898 1.5029 2.5704 1.7870
6.0 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338
7.0 1.3766 1.2532 2.0937 1.5411 2.7165 1.8673
8.0 1.3978 1.2570 2.1286 1.5526 1.7654 1.8920
9.0 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106
10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249
20.0 1.4961 1.2699 2.2881 1.5919 2.9857 1.9781
30.0 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898
40.0 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942
50.0 1.5400 1.2727 2.3572 1.6002 3.0788 1.9962
100.0 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990
e 1.5708 1.2733 2.4050 1.6018 3.1415 2.0000

“Bi = hL/k for the plane wall and hr,/k for the infinite cylinder and sphere. See Figure 5.6.
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5.3.3 Total Energy Transfer

In many situations it is useful to know the total energy that has left (or entered) the wall up
to any time ¢ in the transient process. The conservation of energy requirement, Equation
1.12b, may be applied for the time interval bounded by the initial condition (# = 0) and any
time t > 0

Ein - Eoul = AE‘st (545)

Equating the energy transferred from the wall Q to E,, and setting E,,= 0 and AE, =
E(r) — E(0), it follows that

Q0= —[E® — EW0)] (5.46a)

or
0=- f pc[T(x, 1) — T;1dV (5.46b)

where the integration is performed over the volume of the wall. It is convenient to nondi-
mensionalize this result by introducing the quantity

0, = pcV(T; — T.) (5.47)

which may be interpreted as the initial internal energy of the wall relative to the fluid
temperature. It is also the maximum amount of energy transfer that could occur if the
process were continued to time ¢ = %. Hence, assuming constant properties, the ratio of
the total energy transferred from the wall over the time interval ¢ to the maximum possi-
ble transfer is

0 —[TC,0) =T}l gv _ 1 f
— = | == (1 - 6%aV 5.48
o, )T vTv)UT? 549
Employing the approximate form of the temperature distribution for the plane wall, Equation
5.43b, the integration prescribed by Equation 5.48 can be performed to obtain
o { sin £,
Qo gl
where 6* can be determined from Equation 5.44, using Table 5.1 for values of the coeffi-
cients C, and ;.

o (5.49)

5.5.4 Additional Considerations

Because the mathematical problem is precisely the same, the foregoing results may also be
applied to a plane wall of thickness L that is insulated on one side (x* = 0) and experiences
convective transport on the other side (x* = +1). This equivalence is a consequence of the
fact that, regardless of whether a symmetrical or an adiabatic requirement is prescribed at
x* = 0, the boundary condition is of the form d6*/dx* = 0.

Also note that the foregoing results may be used to determine the transient response of
a plane wall to a sudden change in surface temperature. The process is equivalent to having
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an infinite convection coefficient, in which case the Biot number is infinite (Bi = %) and
the fluid temperature T, is replaced by the prescribed surface temperature 7.

2.6 Radial Systems with Convection

For an infinite cylinder or sphere of radius r, (Figure 5.6b), which is at an initial uniform
temperature and experiences a change in convective conditions, results similar to those of
Section 5.5 may be developed. That is, an exact series solution may be obtained for the
time dependence of the radial temperature distribution, and a one-term approximation may
be used for most conditions. The infinite cylinder is an idealization that permits the
assumption of one-dimensional conduction in the radial direction. It is a reasonable approx-
imation for cylinders having L/r, = 10.

5.6.1 Exact Solutions

For a uniform initial temperature and convective boundary conditions, the exact solutions [4],
applicable at any time (Fo > 0), are as follows.

Infinite Cylinder In dimensionless form, the temperature is

0% = i C, exp (—2Fo) (1) (5.502)
n=1
where Fo = atlr,,
2 ()
N % 5. 5. (5.50b)
& T3 + T

and the discrete values of £, are positive roots of the transcendental equation

Jl(gn)
‘]O(gn)
where Bi = hr,/k. The quantities J; and J,, are Bessel functions of the first kind, and their

values are tabulated in Appendix B.4. Roots of the transcendental equation (5.50c) are tabu-
lated by Schneider [4].

Z, = Bi (5.50¢)

Sphere  Similarly, for the sphere

b
&ur®

0% = i C,exp (—{Fo) sin (£,r*) (5.51a)
n=1

where Fo = at/r?,

o Hsin (&) ~ £,c0 (¢)

. % = sin L) (5.51b)
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and the discrete values of , are positive roots of the transcendental equation
1—{,cotl,=Bi (5.51¢)

where Bi = hr,/k. Roots of the transcendental equation are tabulated by Schneider [4].

5.6.2 Approximate Solutions

For the infinite cylinder and sphere, the foregoing series solutions can again be approxi-
mated by a single term, n = 1, for Fo > 0.2. Hence, as for the case of the plane wall, the
time dependence of the temperature at any location within the radial system is the same as
that of the centerline or centerpoint.

Infinite Cylinder The one-term approximation to Equation 5.50a is
0* = C exp (—(3Fo)J (¢ 1) (5.52a)
or
0™ = 0XJy (L r™) (5.52b)
where 0% represents the centerline temperature and is of the form
0% = C, exp (—{iFo) (5.52¢)

Values of the coefficients C,; and {, have been determined and are listed in Table 5.1 for a
range of Biot numbers.

Sphere From Equation 5.51a, the one-term approximation is

6% = C, exp(—ﬁFo}# sin (¢,) (5.53a)
1
or
o* = 0 ﬁ sin (¢,r) (5.53b)
1

where 0% represents the center temperature and is of the form
0% = C, exp (—{3Fo) (5.53c)

Values of the coefficients C, and {; have been determined and are listed in Table 5.1 for a
range of Biot numbers.

3.6.3 Total Energy Transfer

As in Section 5.5.3, an energy balance may be performed to determine the total energy
transfer from the infinite cylinder or sphere over the time interval Az = ¢. Substituting from

\(8/ Graphical representations of the one-term approximations are presented in Section 58.1.
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the approximate solutions, Equations 5.52b and 5.53b, and introducing Q, from Equation
5.47, the results are as follows.

Infinite Cylinder

Q_ ., 267
R A (5:54)
Sphere
30*
QQO= 1-— ﬁ" [sin (£)) — &, cos ()] (5.55)

Values of the center temperature 0 are determined from Equation 5.52¢ or 5.53c, using the
coefficients of Table 5.1 for the appropriate system.

5.6.4 Additional Considerations

As for the plane wall, the foregoing results may be used to predict the transient response of
long cylinders and spheres subjected to a sudden change in surface temperature. Namely,
an infinite Biot number would be prescribed, and the fluid temperature 7, would be
replaced by the constant surface temperature 7.

EXAMPLE 5.5

Consider a steel pipeline (AISI 1010) that is 1 m in diameter and has a wall thickness of
40 mm. The pipe is heavily insulated on the outside, and, before the initiation of flow, the
walls of the pipe are at a uniform temperature of —20°C. With the initiation of flow, hot oil
at 60°C is pumped through the pipe, creating a convective condition corresponding to
h = 500 W/m?-K at the inner surface of the pipe.

1. What are the appropriate Biot and Fourier numbers 8 min after the initiation of flow?

2. At r = 8min, what is the temperature of the exterior pipe surface covered by the
insulation?

3. What is the heat flux ¢"(W/m?) to the pipe from the oil at # = 8 min?

4. How much energy per meter of pipe length has been transferred from the oil to the
pipe at = 8 min?

SOLUTION
|

Known: Wall subjected to sudden change in convective surface condition.

Find:
1. Biot and Fourier numbers after 8 min.
2. Temperature of exterior pipe surface after 8 min.
3. Heat flux to the wall at 8 min.
4. Energy transferred to pipe per unit length after 8 min.
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Schematic:
T(x, 0) =
T;=-20C ﬁ T, 1
O, H—— T, = 60°C
h = 500 W/m?-K
Insulation ——~
Steel, AIS| 1010 —— T T T
B ‘ oil
L=40mm
Ly
Assumptions:

1. Pipe wall can be approximated as plane wall, since thickness is much less than diameter.
2. Constant properties.
3. Outer surface of pipe is adiabatic.

Properties: Table A.l, steel type AISI 1010 [T = (—20 + 60)°C/2 = 300K]:
p = 7832kg/m’, ¢ = 434 J/kg K, k = 63.9 W/m-K, a = 18.8 X 10 m%/s.

Analysis:
1. At ¢t = 8 min, the Biot and Fourier numbers are computed from Equations 5.10 and

5.12, respectively, with L, = L. Hence

_hL _ 500 W/m*-K X 0.04m _

j =0. <
Bi=" 63.9W/m-K 0.313
76 2 . .
F0=g=18.8X10 m-/s ><8m1n><605/m1n=5.64 4
L’ (0.04 m)*

2. With Bi = 0.313, use of the lumped capacitance method is inappropriate. However, since
Fo > 0.2 and transient conditions in the insulated pipe wall of thickness L correspond to
those in a plane wall of thickness 2L experiencing the same surface condition, the desired
results may be obtained from the one-term approximation for a plane wall. The midplane
temperature can be determined from Equation 5.44

T,—T.
0F =51 = Cew (GiFo)

where, with Bi = 0.313, C, = 1.047 and ¢, = 0.531 rad from Table 5.1. With
Fo = 5.64,

0% =1.047 exp [—(0.531 rad)* X 5.64] = 0.214

Hence after 8 min, the temperature of the exterior pipe surface, which corresponds to
the midplane temperature of a plane wall, is

7(0, 8 min) = T, + 6X(T, — T.,) = 60°C + 0.214(—20 — 60)°C = 42.9°C <
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3. Heat transfer to the inner surface at x = L is by convection, and at any time ¢ the heat
flux may be obtained from Newton’s law of cooling. Hence at r = 480 s,

gU(L, 480 s) = ¢ = h[T(L, 480 s) — T..]

Using the one-term approximation for the surface temperature, Equation 5.43b with
x* =1 has the form

6* = 0% cos ({))
T(L,t) = T + (T; — T,,)0 cos ({)
T(L, 8 min) = 60°C + (=20 — 60)°C X 0.214 X c0s(0.531 rad)
T(L, 8 min) = 45.2°C
The heat flux at + = 8 min is then

¢’ = 500 W/m? - K (45.2 — 60)°C = — 7400 W/m?> <

4. The energy transfer to the pipe wall over the 8-min interval may be obtained from
Equations 5.47 and 5.49. With

Q| _siny)

Qo gl
0 sin(0.531 rad)
—=1—-—>X0.214=0.80
0, 0.531 rad

it follows that
0=0.80pcV(T;,—T.)
or with a volume per unit pipe length of V' = wDL,
Q' =0.80 pctDL(T; — T.,)
Q' =0.80 X 7832 kg/m* X 434 J/kg - K
X ar X 1 m X 0.04m (—20 — 60)°C
Q' =—-273x10"J/m <

Comments:

1. The minus sign associated with ¢” and Q' simply implies that the direction of heat
transfer is from the oil to the pipe (into the pipe wall).

2. The solution for this example is provided as a ready-to-solve model in the Advanced sec-
tion of IHT, which uses the Models, Transient Conduction, Plane Wall option. Since the
IHT model uses a multiple-term approximation to the series solution, the results are more
accurate than those obtained from the foregoing one-term approximation. ITHT Models
for Transient Conduction are also provided for the radial systems treated in Section 5.6.
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EXAMPLE 5.6

A new process for treatment of a special material is to be evaluated. The material, a sphere
of radius r, = 5 mm, is initially in equilibrium at 400°C in a furnace. It is suddenly removed
from the furnace and subjected to a two-step cooling process.

Step 1 Cooling in air at 20°C for a period of time ¢, until the center temperature reaches a
critical value, T,(0, t,) = 335°C. For this situation, the convection heat transfer coeffi-
cientis 1, = 10 W/m?- K.

After the sphere has reached this critical temperature, the second step is initiated.

Step 2 Cooling in a well-stirred water bath at 20°C, with a convection heat transfer coef-
ficient of h,, = 6000 W/m?*- K.

The thermophysical properties of the material are p = 3000kg/m’, k =20 W/m-K,
¢ =1000J/kg K, and a = 6.66 X 10~° m%s.

1. Calculate the time ¢, required for step 1 of the cooling process to be completed.

2. Calculate the time ¢, required during step 2 of the process for the center of the sphere
to cool from 335°C (the condition at the completion of step 1) to 50°C.

SOLUTION
|

Known: Temperature requirements for cooling a sphere.

Find:
1. Time ¢, required to accomplish desired cooling in air.
2. Time t,, required to complete cooling in water bath.

Schematic:
T, =20°C T, =20°C
h, = 10 W/m?K h,, = 6000 W/m?-K
Air Water
Sphere, r, =5 mm ——
p = 3000 kg/m®
c=1kl/kgK L
T;=400°C | o =6.66x 10°m?%s T; =335°C
T,0,1,)=335C  t =20 WmkK 7,0, 1,) = 50°C
Step 1 Step 2
Assumptions:

1. One-dimensional conduction in r.

2. Constant properties.
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Analysis:

1. To determine whether the lumped capacitance method can be used, the Biot number is
calculated. From Equation 5.10, with L, = r,/3,
i = Mo _ 10 W/m®-K X 0.005 m

=833 %X 107%
3k 3X20W/m-K 8.33 %10

Accordingly, the lumped capacitance method may be used, and the temperature is
nearly uniform throughout the sphere. From Equation 5.5 it follows that

I, T,
In
T,—T.,

a a

pVe 0,
=—In—
0,

, _pr,c
“ h,A,

3h

where V = (4/3)7r> and A, = 47r>. Hence

. — 3000 kg/m® X 0.005m X 1000J/kg-K = 400 — 20 _

’ — 04 4
3% 10 W/m2-K 33520 %

2. To determine whether the lumped capacitance method may also be used for the second
step of the cooling process, the Biot number is again calculated. In this case

_ hwry _ 6000 W/m?- K X 0.005 m

5
Y 3% 20 W/m-K

=0.50

and the lumped capacitance method is not appropriate. However, to an excellent approx-
imation, the temperature of the sphere is uniform at ¢t = ¢, and the one-term approxi-
mation may be used for the calculations. The time ¢,, at which the center temperature
reaches 50°C, that is, 7(0, t,,) = 50°C, can be obtained by rearranging Equation 5.53c

x 7(0,1,) — T,
a LG & LG Ii—T.

where ¢, = Fo r?/a. With the Biot number now defined as

h 2.
B = wlo _ 6000 W/m~-K X 0.005m _ 1.50

k 20 W/m-K

Table 5.1 yields C; = 1.376 and ¢, = 1.800 rad. It follows that

| L (50 = 20°C
Fo=- 1 X ~0.82
? 7 7 (1,800 rad)? n[1.376 (335 — 20)°C

and
2 2
t = Folo =gy QOSM° 4 <
a 6.66 X 10° m’/s

Note that, with Fo = 0.82, use of the one-term approximation is justified.
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Comments:

1. If the temperature distribution in the sphere at the conclusion of step 1 were not uni-
form, the one-term approximation could not be used for the calculations of step 2.

2. The surface temperature of the sphere at the conclusion of step 2 may be obtained
from Equation 5.53b. With 6* = 0.095 and r* = 1,

I(r,) — T _ 0.095
T.,— T, 1.800 rad

0*(r,) = sin (1.800 rad) = 0.0514

and
T(r,) = 20°C + 0.0514(335 — 20)°C = 36°C

The infinite series, Equation 5.51a, and its one-term approximation, Equation 5.53b,
may be used to compute the temperature at any location in the sphere and at any time
t >t, For (t — t,) < 0.2(0.005 m)*/6.66 X 10~° m%*/s = 0.75 s, a sufficient number of
terms must be retained to ensure convergence of the series. For (t — #,) > 0.75 s, satis-
factory convergence is provided by the one-term approximation. Computing and plot-
ting the temperature histories for » = 0 and r = r,, we obtain the following results for
O0=@—1)=S5s:

400

300
€ 200
~

100
50

3. The IHT Models, Transient Conduction, Sphere option could be used to analyze the
cooling processes experienced by the sphere in air and water, steps 1 and 2. The IHT
Models, Lumped Capacitance option may only be used to analyze the air-cooling
process, step 1.

3.4 The Semi-Infinite Solid

An important simple geometry for which analytical solutions may be obtained is the semi-
innite solid. Since, in principle, such a solid extends to infinity in all but one direction, it is
characterized by a single identifiable surface (Figure 5.7). If a sudden change of conditions
is imposed at this surface, transient, one-dimensional conduction will occur within the
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Case (1) Case (2) Case (3)
Tx, 0) = T; Tx, 0) = T; Tx, 0) = T;
70,0 =T, —k dTIox|. o= q! —k 9TIox|, _ o = hIT., - T(O, N1
T T h
95— T T
—>x —x
T(x, 1)
T,

X X

FIGURE 5.7 Transient temperature distributions in a semi-infinite solid for three surface
conditions: constant surface temperature, constant surface heat flux, and surface convection.

solid. The semi-infinite solid provides a useful idealization for many practical problems.
It may be used to determine transient heat transfer near the surface of the earth or to
approximate the transient response of a finite solid, such as a thick slab. For this second
situation the approximation would be reasonable for the early portion of the transient,
during which temperatures in the slab interior (well removed from the surface) are essen-
tially uninfluenced by the change in surface conditions. These early portions of the tran-
sient might correspond to very small Fourier numbers, and the approximate solutions of
Sections 5.5 and 5.6 would not be valid. Although the exact solutions of the preceding
sections could be used to determine the temperature distributions, many terms might be
required to evaluate the infinite series expressions. The following semi-infinite solid solu-
tions often eliminate the need to evaluate the cumbersome infinite series exact solutions at
small Fo. It will be shown that a plane wall of thickness 2L can be accurately approxi-
mated as a semi-infinite solid for Fo = at/L* < 0.2.

The heat equation for transient conduction in a semi-infinite solid is given by Equation
5.29. The initial condition is prescribed by Equation 5.30, and the interior boundary condi-
tion is of the form

Tx— w0, )=T, (5.56)

Closed-form solutions have been obtained for three important surface conditions, instanta-
neously applied at = 0 [3, 4]. These conditions are shown in Figure 5.7. They include
application of a constant surface temperature 7, # T, application of a constant surface heat
flux ¢/, and exposure of the surface to a fluid characterized by 7., # T; and the convection
coefficient A.

The solution for case 1 may be obtained by recognizing the existence of a similarity
variable 1, through which the heat equation may be transformed from a partial differential
equation, involving two independent variables (x and 7), to an ordinary differential
equation expressed in terms of the single similarity variable. To confirm that such a



312 Chapter 5 m Transient Conduction

requirement is satisfied by 1 = x/(4at)'?, we first transform the pertinent differential
operators, such that

JT _drom_ 1 dT

dx dnox  (4an)'?dn
PT_ d [aT] m_ 14T

g dn|dx | ox  dar g
or _drom _ __ x dT
dt  dn ot 2t(4at)'* dn

Substituting into Equation 5.29, the heat equation becomes

2
&T _ _, dT

5.57
i i (3.57)

With x = 0 corresponding to 1 = 0, the surface condition may be expressed as
T(m=0)=T, (5.58)

and with x — o0, as well as ¢t = 0, corresponding to 1 — o, both the initial condition and
the interior boundary condition correspond to the single requirement that

I(m— o) =T, (5.59)

Since the transformed heat equation and the initial/boundary conditions are independent
of x and t, n = x/(4at)'” is, indeed, a similarity variable. Its existence implies that, irrespec-
tive of the values of x and ¢, the temperature may be represented as a unique function of 7.

The specific form of the temperature dependence, 7(n), may be obtained by separating
variables in Equation 5.57, such that

d(dT/dm) — 2 dn
(dTldm)
Integrating, it follows that

In(dT/dn) = —n* + C;
or

9L~ Crexp(— 1)
n

Integrating a second time, we obtain
n
T= CJ exp(—u*) du + C,
0

where u is a dummy variable. Applying the boundary condition at n = 0, Equation 5.58, it
follows that C, = T, and

n
T= CJ exp(—u?)du + T,
0
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From the second boundary condition, Equation 5.59, we obtain
T, = C,f exp(—u?) du + T,
0

or, evaluating the definite integral,

_ 2T =T
1 72

Hence the temperature distribution may be expressed as

T n
TiTS = (2/77”2)f exp(—ud)du=erfn (5.60)
— T, 0

where the Gaussian error function, erf m, is a standard mathematical function that is
tabulated in Appendix B. Note that erf(n) asymptotically approaches unity as 1 becomes
infinite. Thus, at any nonzero time, temperatures everywhere are predicted to have changed
from T; (become closer to 7). The infinite speed at which boundary-condition information
propagates into the semi-infinite solid is physically unrealistic, but this limitation of
Fourier’s law is not important except at extremely small time scales, as discussed in
Section 2.3. The surface heat flux may be obtained by applying Fourier’s law at x = 0, in
which case

d(erf ) 0
I~ kg, -y XN
&x x=0 d’)” 07)6 77=0

g, = —k

¢! = KT, = T)2Im")exp(—n))dar) 2,

_KT,—T)

(Wat)]/Z

"
s

(5.61)

Analytical solutions may also be obtained for the case 2 and case 3 surface conditions,
and results for all three cases are summarized as follows.

Case 1 Constant Surface Temperature: 7(0, t) = T,

T, — T _ x
() oo
kT, — T,
g\t = ML 1) (5.61)
ot

Case 2 Constant Surface Heat Flux: ¢} = ¢/,

24 (atlm)"? —2\ dx x
Te.t)— T, = - f 5.62
(x, 1) i A XP\ s . ore N (5.62)
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Case 3 Surface Convection: _k% = h[T, — T(0, )]
x=0
T(x, 1) — T, ( x )
— =erfc
T.—T, 2V at

_ hx | Rat x WVt
[exp( X + 2 )][erfc (2@4_ . )] (5.63)

The complementary error function, erfc w, is defined as erfc w = 1 — erf w.

Temperature histories for the three cases are shown in Figure 5.7, and distinguishing fea-
tures should be noted. With a step change in the surface temperature, case 1, temperatures
within the medium monotonically approach 7 with increasing ¢, while the magnitude of the
surface temperature gradient, and hence the surface heat flux, decreases as t 2. A thermal
penetration depth 6, can be defined as the depth to which significant temperature effects
propagate within a medium. For example, defining , as the x-location at which (7'— T)/
(T;-Ty) = 090, Equation 5.60 results in J, = 2.3V at? Hence, the penetration depth
increases as #'* and is larger for materials with higher thermal diffusivity. For a fixed surface
heat flux (case 2), Equation 5.62 reveals that T(0, ) = T,(f) increases monotonically as ",
For surface convection (case 3), the surface temperature and temperatures within the medium
approach the fluid temperature 7., with increasing time. As 7, approaches T, there is, of
course, a reduction in the surface heat flux, ¢;(r) = h[T., — T,(t)]. Specific temperature histo-
ries computed from Equation 5.63 are plotted in Figure 5.8. The result corresponding to
h = o is equivalent to that associated with a sudden change in surface temperature,
case 1. That is, for 7 = oo, the surface instantaneously achieves the imposed fluid tempera-
ture (T, = T,), and with the second term on the right-hand side of Equation 5.63 reducing
to zero, the result is equivalent to Equation 5.60.

An interesting permutation of case 1 occurs when two semi-infinite solids, initially at
uniform temperatures 7, ; and Ty, are placed in contact at their free surfaces (Figure 5.9).

1.0

0.5

=
| 0.1
&~ &8
0.05
0.01 FIGURE 5.8 Temperature histories in a

semi-infinite solid with surface convection

[4]. (Adapted with permission.)

N
gl

To apply the semi-infinite approximation to a plane wall of thickness 2L, it is necessary that 8, < L. Substituting
8, = L into the expression for the thermal penetration depth yields Fo = 0.19 =~ 0.2. Hence, a plane wall of
thickness 2L can be accurately approximated as a semi-infinite solid for Fo = at/L> < 0.2. This restriction will
also be demonstrated in Section 5.8.
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\_,TEJ‘/% FIGURE 5.9 Interfacial contact between two semi-

infinite solids at different initial temperatures.

If the contact resistance is negligible, the requirement of thermal equilibrium dictates that,
at the instant of contact (¢t = 0), both surfaces must assume the same temperature 7, for
which Ty ; < T, <T,,. Since T, does not change with increasing time, it follows that the
transient thermal response and the surface heat flux of each of the solids are determined by
Equations 5.60 and 5.61, respectively.

The equilibrium surface temperature of Figure 5.9 may be determined from a surface
energy balance, which requires that

quI,A = q,s,,B (5.64)

Substituting from Equation 5.61 for q;’ A and g; g and recognizing that the x-coordinate of
Figure 5.9 requires a sign change for g} ,, it follows that

—ka(T, — TA,i) B k(T — TB,i)
12 o )1/2

(5.65)
(Tt (magt
or, solving for T},

(kPC)HzTAl + (kPC)”zTB,i
Ts (kpc)I/Z + (kpc)l/2 (566)

Hence the quantity m = (kpc)"? is a weighting factor that determines whether 7, will more
closely approach T ; (m, > mg) or Ty, (mg > m,).

EXAMPLE 5.7

On a hot and sunny day, the concrete deck surrounding a swimming pool is at a tempera-
ture of Td = 55°C. A swimmer walks across the dry deck to the pool. The soles of the
swimmer’s dry feet are characterized by an L = 3-mm-thick skin/fat layer of thermal con-
ductivity k; = 0.3 W/m* K. Consider two types of concrete decking; (i) a dense stone mix
and (ii) a lightweight aggregate characterized by density, specific heat, and thermal conduc-
tivity of p,, = 1495 kg/m’, Coiw = 880J/kg-K, and k;, = 0.28 W/m-K, respectively. The
density and specific heat of the skin/fat layer may be approximated to be those of liquid
water, and the skin/fat layer is at an initial temperature of T;; = 37°C. What is the tempera-
ture of the bottom of the swimmer’s feet after an elapsed time of t = 1 s?




316

Chapter 5 m Transient Conduction

SOLUTION

Known: Concrete temperature, initial foot temperature, and thickness of skin/fat layer on
the sole of the foot. Skin/fat and lightweight aggregate concrete properties.

Find: The temperature of the bottom of the swimmer’s feet after 1 s.

Schematic:

Ty, =37°C

L; =3 mm
Foot X
Skin/fat
Concrete deck

T, = 55°C —

Assumptions:

1. One-dimensional conduction in the x-direction.
2. Constant and uniform properties.

3. Negligible contact resistance.

Properties: Table A.3 stone mix concrete (7' = 300 K): p,, = 2300 kg/m’, k,, = 1.4 W/m K,
can = 880 J/kg- K. Table A.6 water (T = 310 K): p; = 993 kg/m?, c; = 4178 J/kg- K.

Analysis: If the skin/fat layer and the deck are both semi-infinite media, from Equation 5.66
the surface temperature 7 is constant when the swimmer’s foot is in contact with the deck. For
the lightweight aggregate concrete decking, the thermal penetration depth att = 1 s is

ki .
By =23Vagt =23 [o =2.3\/ 0.28 Wim- K X Is
’ PrwCiw 1495 kg/m> X 880 J/kg - K
=1.06X103*m =1.06 mm

Since the thermal penetration depth is relatively small, it is reasonable to assume that the light-
weight aggregate deck behaves as a semi-infinite medium. Similarly, the thermal penetration
depth in the stone mix concrete is 0, ¢, = 1.91 mm, and the thermal penetration depth associ-
ated with the skin/fat layer of the foot is 5, = 0.62 mm. Hence, it is reasonable to assume that
the stone mix concrete deck responds as a semi-infinite medium, and, since 8, ¢ < Ly, it is also
correct to assume that the skin/fat layer behaves as a semi-infinite medium. Therefore, Equa-
tion 5.66 may be used to determine the surface temperature of the swimmer’s foot for exposure
to the two types of concrete decking. For the lightweight aggregate,

 (kpO2 Ty + (kpo)lP Ty,
s (kpe)l2 + (kpe)l

[(0.28 W/m - K X 1495 ke/m® X 880 J/kg - K)2 X 55°C ]

+ (0.3 W/m - K X 993 kg/m® X 4178 J/kg - K)""? X 37°C
= =43.3°C <
(0.28 W/m - K X 1495 kg/m* X 880 J/kg - K)"/?
+ (0.3 W/m - K X 993 kg/m® X 4178 J/kg - K)'"?
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Repeating the calculation for the stone mix concrete gives 7T, = 47.8°C. <

Comments:

1. The lightweight aggregate concrete feels cooler to the swimmer, relative to the stone mix
concrete. Specifically, the temperature rise from the initial skin/fat temperature that is
associated with the stone mix concrete is ATy, = Ty, — Ty;; = 47.8°C - 37°C = 10.8°C,
whereas the temperature rise associated with the lightweight aggregate is ATy, = T, —
Ty; = 43.3°C-37°C = 6.3°C.

2. The thermal penetration depths associated with an exposure time of = 1s are small.
Stones and air pockets within the concrete may be of the same size as the thermal penetra-
tion depth, making the uniform property assumption somewhat questionable. The pre-
dicted foot temperatures should be viewed as representative values.

3.8 Objects with Constant Surface Temperatures or Surface Heat Fluxes

In Sections 5.5 and 5.6, the transient thermal response of plane walls, cylinders, and
spheres to an applied convection boundary condition was considered in detail. It was
pointed out that the solutions in those sections may be used for cases involving a step
change in surface temperature by allowing the Biot number to be infinite. In Section 5.7,
the response of a semi-infinite solid to a step change in surface temperature, or to an
applied constant heat flux, was determined. This section will conclude our discussion of
transient heat transfer in one-dimensional objects experiencing constant surface tempera-
ture or constant surface heat flux boundary conditions. A variety of approximate solutions
are presented.

3.8.1 Constant Temperature Boundary Conditions

In the following discussion, the transient thermal response of objects to a step change in
surface temperature is considered.

Semi-Infinite Solid Insight into the thermal response of objects to an applied constant
temperature boundary condition may be obtained by casting the heat flux in Equation 5.61
into the nondimensional form

q; L.

KT, —T) (5.67)

q*=

where L, is a characteristic length and g* is the dimensionless conduction heat rate that
was introduced in Section 4.3. Substituting Equation 5.67 into Equation 5.61 yields

(5.68)
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where the Fourier number is defined as Fo = at/L2. Note that the value of ¢ is independent
of the choice of the characteristic length, as it must be for a semi-infinite solid. Equation
5.68 is plotted in Figure 5.10a, and since ¢* = Fo~ " the slope of the line is —1/2 on the
log-log plot.

Interior Heat Transfer: Plane Wall, Cylinder, and Sphere Results for heat transfer to
the interior of a plane wall, cylinder, and sphere are also shown in Figure 5.10a. These
results are generated by using Fourier’s law in conjunction with Equations 5.42, 5.50, and
5.51 for Bi — . As in Sections 5.5 and 5.6, the characteristic length is L. = L or r, for a
plane wall of thickness 2L or a cylinder (or sphere) of radius r,, respectively. For each
geometry, ¢* initially follows the semi-infinite solid solution but at some point decreases
rapidly as the objects approach their equilibrium temperature and g; (f = %) — 0. The
value of g* is expected to decrease more rapidly for geometries that possess large surface
area to volume ratios, and this trend is evident in Figure 5.10a.

100
Exterior objects, L, = (A/4m)1/2
Semi-infinite solid
10
001
Interior, L.= Lorr,
o1 sphere
' infinite cylinder
plane wall
0.01
0.0001 0.001 0.01 0.1 1 10
Fo = atll?
(a)
100
Exterior objects, L, = (A/4m)1/2
Semi-infinite solid
10
-XS 1
Interior, L.=Lorr,

0.1 .SDr‘]e.re : FIGURE 5.10 Transient dimensionless
infinite cylinder conduction heat rates for a variety of
plane wall geometries. (a) Constant surface

0.01 temperature. Results for the geometries
0.0001 0.001 0.01 0.1 1 10 of Table 4.1 lie within the shaded region

Fo = aill? and are from Yovanovich [7]. (b) Constant

(b) surface heat flux.
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Exterior Heat Transfer: Various Geometries Additional results are shown in Figure 5.10a
for objects that are embedded in an exterior (surrounding) medium of infinite extent. The
infinite medium is initially at temperature 7;, and the surface temperature of the object is
suddenly changed to 7,. For the exterior cases, L. is the characteristic length used in
Section 4.3, namely L, = (A,/4)"*. For the sphere in a surrounding infinite medium, the
exact solution for g*(Fo) is [7]

1
V wFo

As seen in the figure, for all of the exterior cases g* closely mimics that of the sphere when the
appropriate length scale is used in its definition, regardless of the object’s shape. Moreover, in
a manner consistent with the interior cases, ¢* initially follows the semi-infinite solid solution.
In contrast to the interior cases, g* eventually reaches the nonzero, steady-state value of g%
that is listed in Table 4.1. Note that g; in Equation 5.67 is the average surface heat flux for
geometries that have nonuniform surface heat flux.

As seen in Figure 5.10a, all of the thermal responses collapse to that of the semi-
infinite solid for early times, that is, for Fo less than approximately 10>, This remarkable
consistency reflects the fact that temperature variations are confined to thin layers adjacent
to the surface of any object at early times, regardless of whether internal or external heat
transfer is of interest. At early times, therefore, Equations 5.60 and 5.61 may be used to
predict the temperatures and heat transfer rates within the thin regions adjacent to the
boundaries of any object. For example, predicted local heat fluxes and local dimensionless
temperatures using the semi-infinite solid solutions are within approximately 5% of the pre-
dictions obtained from the exact solutions for the interior and exterior heat transfer cases
involving spheres when Fo = 107>,

g* = +1 (5.69)

3.8.2 Constant Heat Flux Boundary Conditions

When a constant surface heat flux is applied to an object, the resulting surface temperature
history is often of interest. In this case, the heat flux in the numerator of Equation 5.67 is now
constant, and the temperature difference in the denominator, 7; — T;, increases with time.

Semi-Infinite Solid In the case of a semi-infinite solid, the surface temperature history
can be found by evaluating Equation 5.62 at x = 0, which may be rearranged and combined

with Equation 5.67 to yield
1 |«
= [ 5.70
i 2V Fo ( )

As for the constant temperature case, g* * Fo~ ', but with a different coefficient. Equa-
tion 5.70 is presented in Figure 5.100.

Interior Heat Transfer: Plane Wall, Cylinder, and Sphere A second set of results is
shown in Figure 5.10b for the interior cases of the plane wall, cylinder, and sphere. As for
the constant surface temperature results of Figure 5.10a, ¢* initially follows the semi-
infinite solid solution and subsequently decreases more rapidly, with the decrease occurring
first for the sphere, then the cylinder, and finally the plane wall. Compared to the constant
surface temperature case, the rate at which g* decreases is not as dramatic, since steady-
state conditions are never reached; the surface temperature must continue to increase with
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time. At late times (large Fo), the surface temperature increases linearly with time, yielding
g* = Fo™', with a slope of —1 on the log-log plot.

Exterior Heat Transfer: Various Geometries Results for heat transfer between a sphere
and an exterior infinite medium are also presented in Figure 5.10b. The exact solution for
the embedded sphere is

g* = [1 — exp(Fo) erfc(Fo'?)]™! (5.71)

As in the constant surface temperature case of Figure 5.10a, this solution approaches
steady-state conditions, with gi, = 1. For objects of other shapes that are embedded within
an infinite medium, ¢* would follow the semi-infinite solid solution at small Fo. At larger
Fo, g* must asymptotically approach the value of ¢, given in Table 4.1 where 7, in Equa-
tion 5.67 is the average surface temperature for geometries that have nonuniform surface
temperatures.

3.8.3 Approximate Solutions

Simple expressions have been developed for g*(Fo) [8]. These expressions may be used to
approximate all the results included in Figure 5.10 over the entire range of Fo. These
expressions are listed in Table 5.2, along with the corresponding exact solutions. Table
5.2a is for the constant surface temperature case, while Table 5.2b is for the constant sur-
face heat flux situation. For each of the geometries listed in the left-hand column, the tables
provide the length scale to be used in the definition of both Fo and ¢*, the exact solution for
q*(Fo), the approximation solutions for early times (Fo < 0.2) and late times (Fo = 0.2),
and the maximum percentage error associated with use of the approximations (which
occurs at Fo = 0.2 for all results except the external sphere with constant heat flux).

EXAMPLE 5.8

Derive an expression for the ratio of the total energy transferred from the isothermal
surfaces of a plane wall to the interior of the plane wall, Q/Q,, that is valid for Fo < 0.2.
Express your results in terms of the Fourier number Fo.

SOLUTION

Known: Plane wall with constant surface temperatures.

Find: Expression for Q/Q, as a function of Fo = at/L>.

Schematic:




TABLE 5.2¢  Summary of transient heat transfer results for constant surface temperature cases® [8]

q*(Fo)
Approximate Solutions
Length Exact pprox o Maximum
Geometry Scale, L, Solutions Fo<0.2 Fo=0.2 Error (%)
.. . . 1 .
Semi-infinite L (arbitrary) Use exact solution. None
V. wFo

Interior Cases

Plane wall of L 2¥exp(—2Fo) {,=((n—3m 1 2exp(—2Fo) ¢, =ml2 1.7

thickness 2L n=1 VarFo

Infinite cylinder 7, 2 exp(—2Fo)  Jo(&,) =0 L 0.50 — 0.65 Fo 2exp(—{3Fo) ¢, =2.4050 0.8

n=1 \/TFb
o | ,
Sphere 7, 2> exp(—2Fo) (,=nm -1 2exp(—¢iFo) (=7 6.3
n=1 V. Fo

Exterior Cases

Sphere r, 1 + 1 Use exact solution. None

wFo

Various shapes 1

(Table 4.1, (A,/4m)"? None ——— + g% g% from Table 4.1 7.1

cases 12-15) V wFo

g% = q!LJKT, — T;) and Fo = at/L% where L, is the length scale given in the table, T} is the object surface temperature, and T is (a) the initial object temperature for the interior cases
and (b) the temperature of the infinite medium for the exterior cases.
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TABLE 5.2b  Summary of transient heat transfer results for constant surface heat flux cases® [8]

q*(Fo)
Approximate Solutions
Length Exact Maximum
Geometry Scale, L, Solutions Fo<0.2 Fo=0.2 Error (%)
Semi-infinite L (arbitrary) % ,FL:; Use exact solution. None
Interior Cases (—2 Foy|! B -1
ex 0
Plane wall of L [Fo SRR ) opeaa ] L =nm % [z Fo + ﬂ 53
thickness 2L n=1 & o L
o 1 &exp(=¢, Fo) | | |7« i o
+o -2y = S [T + .
Infinite cylinder r, [ZFO 1 2;1 : Ji(¢,) =0 W Fo 8 2Fo 2.1
exp(—{; Fo) | 1 /m = !
+= = o L + = .
Sphere r, [3Fo 2;1 z tan(Z,) = ¢, Fe 4 73Fo s 45
Exterior Cases
12y71-1 | 0.77
- o + .
Sphere 7, [1 — exp(Fo)erfc(Fo'7)] NFo T4 . 1 32
Various shapes
(Table 4.1, \ (o & 077
B 12 LR T AL *
cases 12-15) (A,/4) None WFo 2 Ve + g% Unknown

‘g% = q!LJK(T, — T;) and Fo = at/L? where L. is the length scale given in the table, T, is the object surface temperature, and 7; is (a) the initial object temperature for the interior cases
and (b) the temperature of the infinite medium for the exterior cases.
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Assumptions:
1. One-dimensional conduction.
2. Constant properties.
3. Validity of the approximate solution of Table 5.2a.

Analysis:  From Table 5.2a for a plane wall of thickness 2L and Fo < 0.2,

i
qg* = q S— where Fo =%

CKT,—T) \mFo L

Combining the preceding equations yields

"n__ k(Ts - Tl)
’ ot

Recognizing that Q is the accumulated heat that has entered the wall up to time ¢, we

can write
t

f qydt
0

=0

t
0%
= = t V Fo <
Qn ch(Ts - ﬂ) LV Wa[fo

—12 —

2
Va

Comments:

1. The exact solution for Q/Q, at small Fourier number involves many terms that would
need to be evaluated in the infinite series expression. Use of the approximate solution
simplifies the evaluation of Q/Q, considerably.

2. At Fo =0.2, Q/Q, = 0.5. Approximately half of the total possible change in thermal
energy of the plane wall occurs during Fo = 0.2.

3. Although the Fourier number may be viewed as a dimensionless time, it has an impor-
tant physical interpretation for problems involving heat transfer by conduction through
a solid concurrent with thermal energy storage in the solid. Specifically, as suggested
by the solution, the Fourier number provides a measure of the amount of energy stored
in the solid at any time.

_

EXAMPLE 5.9

A proposed cancer treatment utilizes small, composite nanoshells whose size and composi-
tion are carefully specified so that the particles efficiently absorb laser irradiation at particu-
lar wavelengths [9]. Prior to treatment, antibodies are attached to the nanoscale particles.
The doped particles are then injected into the patient’s bloodstream and are distributed
throughout the body. The antibodies are attracted to malignant sites, and therefore carry
and adhere the nanoshells only to cancerous tissue. After the particles have come to rest
within the tumor, a laser beam penetrates through the tissue between the skin and the can-
cer, is absorbed by the nanoshells, and, in turn, heats and destroys the cancerous tissues.
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Consider an approximately spherical tumor of diameter D, = 3 mm that is uniformly

infiltrated with nanoshells that are highly absorptive of incident radiation from a laser
located outside the patient’s body.

Mirror

Nanoshell =|:|

impregnated

tumor

Estimate the heat transfer rate from the tumor to the surrounding healthy tissue for a
steady-state treatment temperature of 7, = 55°C at the surface of the tumor. The ther-
mal conductivity of healthy tissue is approximately k£ = 0.5 W/m-K, and the body
temperature is 7, = 37°C.

Find the laser power necessary to sustain the tumor surface temperature at 7, = 55°C
if the tumor is located d = 20 mm beneath the surface of the skin, and the laser heat
flux decays exponentially, ¢/(x) = g/, (1 — p) e, between the surface of the body
and the tumor. In the preceding expression, ¢j, is the laser heat flux outside the body,
p = 0.05 is the reflectivity of the skin surface, and k = 0.02mm ! is the extinction
coefcient of the tissue between the tumor and the surface of the skin. The laser beam

has a diameter of D; = 5 mm.

Neglecting heat transfer to the surrounding tissue, estimate the time at which the tumor
temperature is within 3°C of 7, = 55°C for the laser power found in part 2. Assume
the tissue’s density and specific heat are that of water.

Neglecting the thermal mass of the tumor but accounting for heat transfer to the sur-

rounding tissue, estimate the time needed for the surface temperature of the tumor to
reach T, = 52°C.

SOLUTION

Known: Size of a small sphere; thermal conductivity, reflectivity, and extinction coeffi-
cient of tissue; depth of sphere below the surface of the skin.

Find:
1.
2.
3.

Heat transferred from the tumor to maintain its surface temperature at 7, = 55°C.
Laser power needed to sustain the tumor surface temperature at 7, , = 55°C.

Time for the tumor to reach T, = 52°C when heat transfer to the surrounding tissue is
neglected.

Time for the tumor to reach 7, = 52°C when heat transfer to the surrounding tissue is
considered and the thermal mass of the tumor is neglected.



5.8 m Objects with Constant Surface Temperatures or Surface Heat Fluxes 325

Schematic:
Laser beam, g/,
NIRRT
l . Skin, p = 0.05
x |
|_— Tumor
Healthy tissue
T, =37°C
k= 0.5 Wm-K
k=0.02 mm~1
Assumptions:
1. One-dimensional conduction in the radial direction.

A B

Constant properties.

Healthy tissue can be treated as an infinite medium.

The treated tumor absorbs all irradiation incident from the laser.
Lumped capacitance behavior for the tumor.

Neglect potential nanoscale heat transfer effects.

Neglect the effect of perfusion.

Properties: Table A.6, water (320 K, assumed): p = v; ' = 989.1 kg/m’, ¢, = 4180 J/kg* K.

Analysis:

1.

2.

3.

The steady-state heat loss from the spherical tumor may be determined by evaluating
the dimensionless heat rate from the expression for case 12 of Table 4.1:

q=2mkD(T,, — T;) =2 X 7 X 0.5 W/m+K X 3 X 10> m X (55 — 37)°C
=0.170 W <

The laser irradiation will be absorbed over the projected area of the tumor, 77D%/4. To deter-
mine the laser power corresponding to ¢ = 0.170 W, we first write an energy balance for
the sphere. For a control surface about the sphere, the energy absorbed from the laser irra-
diation is offset by heat conduction to the healthy tissue, ¢ = 0.170 W = ¢/ (x = d)mD}/4,
where, g/(x = d) = q],,(1 — p)e " and the laser power is P, = ¢, mDj}/4. Hence,

P, = gD7el[(1 — p)D7]
=0.170 W X (5 X 1073 m)? X @02 mm™ " X20mm);1 (1 — () 05) X (3 X 107> m)?]
=0.74 W <

The general lumped capacitance energy balance, Equation 5.14, may be written

M dT
q)(x = d)mD?/4 = q = pV s
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Separating variables and integrating between appropriate limits,
’ T,
1 f dt = J dr
pVc
=0 T,

yields

pVe, ~989.1kg/m* X (m/6) X (3 X 107> m)* X 4180 J/kg-K

1= 0~T) 0.170 W

X (52°C — 37°C)

or
t=5.16s <
4. Using Equation 5.71,

q2mkD(T, — T,) = q* = [1 — exp(Fo)erfc(Fo'?)]™!

which may be solved by trial-and-error to yield Fo = 10.3 = 4at/D;. Then, with
a = kipc, = 0.50 W/m-K/(989.1 kg/m® X 4180 J/kg-K) = 1.21 X 10~" m*/s, we find

t=FoD}4a =103 X (3 X 10 m)*/(4 X 1.21 X 107" m?¥s) = 192 s <

Comments:

1. The analysis does not account for blood perfusion. The flow of blood would lead to
advection of warmed fluid away from the tumor (and relatively cool blood to the vicinity
of the tumor), increasing the power needed to reach the desired treatment temperature.

2. The laser power needed to treat various-sized tumors, calculated as in parts 1 and 2 of
the problem solution, is shown below. Note that as the tumor becomes smaller, a
higher-powered laser is needed, which may seem counterintuitive. The power required
to heat the tumor, which is the same as the heat loss calculated in part 1, increases in
direct proportion to the diameter, as might be expected. However, since the laser
power flux remains constant, a smaller tumor cannot absorb as much energy (the
energy absorbed has a D? dependence). Less of the overall laser power is utilized to
heat the tumor, and the required laser power increases for smaller tumors.

2.5

1.5

Laser power, P; (W)

0.5
1 2 3 4

Tumor diameter, D, (mm)
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3. To determine the actual time needed for the tumor temperature to approach steady-
state conditions, a numerical solution of the heat diffusion equation applied to the sur-
rounding tissue, coupled with a solution for the temperature history within the tumor,
would be required. However, we see that significantly more time is needed for the
surrounding tissue to reach steady-state conditions than to increase the temperature of
the isolated spherical tumor. This is due to the fact that higher temperatures propagate
into a large volume when heating of the surrounding tissue is considered, while in
contrast the thermal mass of the tumor is limited by the tumor’s size. Hence, the
actual time to heat both the tumor and the surrounding tissue will be slightly greater
than 192 s.

4. Since temperatures are likely to increase at a considerable distance from the tumor, the
assumption that the surroundings are of infinite size would need to be checked by
inspecting results of the proposed numerical solution described in Comment 3.

3.9 Periodic Heating

In the preceding discussion of transient heat transfer, we have considered objects that expe-
rience constant surface temperature or constant surface heat flux boundary conditions. In
many practical applications the boundary conditions are not constant, and analytical solu-
tions have been obtained for situations where the conditions vary with time. One situation
involving nonconstant boundary conditions is periodic heating, which describes various
applications, such as thermal processing of materials using pulsed lasers, and occurs natu-
rally in situations such as those involving the collection of solar energy.

Consider, for example, the semi-infinite solid of Figure 5.11a. For a surface tempera-
ture history described by 7(0, 1) = T; + AT sin wt, the solution of Equation 5.29 subject
to the interior boundary condition given by Equation 5.56 is

W = exp[—xVw/2a] sin[ot — ¥V ol2a] (5.72)

This solution applies after sufficient time has passed to yield a guasi-steady state for
which all temperatures fluctuate periodically about a time-invariant mean value. At loca-
tions in the solid, the fluctuations have a time lag relative to the surface temperature.

10, 1) = T, + ATsin(wr) 4,0, 1) = Ag, + Agsin(wr)
T;
— AT <«—
i ~ ~ T
N\ FIGURE 5.11 Schematic of
X \ 8,

(@) a periodically heated, one-
—L dimensional semi-infinite solid and

(b) a periodically heated strip attached

(a) (b) to a semi-infinite solid.
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In addition, the amplitude of the fluctuations within the material decays exponentially
with distance from the surface. Consistent with the earlier definition of the thermal pen-
etration depth, 6, can be defined as the x-location at which the amplitude of the temper-
ature fluctuation is reduced by approximately 90% relative to that of the surface. This
results in 8, = 4 Va/w. The heat flux at the surface may be determined by applying
Fourier’s law at x = 0, yielding

qut) = KATV wla sin(wt + 7/4) (5.73)

Equation 5.73 reveals that the surface heat flux is periodic, with a time-averaged value of zero.

Periodic heating can also occur in two- or three-dimensional arrangements, as shown
in Figure 5.11b. Recall that for this geometry, a steady state can be attained with constant
heating of the strip placed upon a semi-infinite solid (Table 4.1, case 13). In a similar man-
ner, a quasi-steady state may be achieved when sinusoidal heating (¢, = Ag, + Ag, sin wt)
is applied to the strip. Again, a quasi-steady state is achieved for which all temperatures
fluctuate about a time-invariant mean value.

The solution of the two-dimensional, transient heat diffusion equation for the two-
dimensional configuration shown in Figure 5.115 has been obtained, and the relationship
between the amplitude of the applied sinusoidal heating and the amplitude of the tempera-
ture response of the heated strip can be approximated as [10]

Linrn) + cz] (5.74)

Ag, Ag,
AT = 4s [— 1 In(w/2) — In(w*/4a) + CI] = =4 [— >

Lk 2 Lk

where the constant C; depends on the thermal contact resistance at the interface between
the heated strip and the underlying material. Note that the amplitude of the temperature
fluctuation, AT, corresponds to the spatially averaged temperature of the rectangular strip
of length L and width w. The heat flux from the strip to the semi-infinite medium is
assumed to be spatially uniform. The approximation is valid for L > w. For the system of
Figure 5.11b, the thermal penetration depth is smaller than that of Figure 5.11a because
of the lateral spreading of thermal energy and is §, =~V a/w.

EXAMPLE 5.10

A nanostructured dielectric material has been fabricated, and the following method is used
to measure its thermal conductivity. A long metal strip 3000 angstroms thick, w = 100 um
wide, and L = 3.5 mm long is deposited by a photolithography technique on the top surface
of a d = 300-um-thick sample of the new material. The strip is heated periodically by an
electric current supplied through two connector pads. The heating rate is ¢,(f) = Ag, + Ag,
sin(wt), where Ag, is 3.5 mW. The instantaneous, spatially averaged temperature of the
metal strip is found experimentally by measuring the time variation of its electrical resis-
tance, R(f) = E(t)/I(t), and by knowing how the electrical resistance of the metal varies
with temperature. The measured temperature of the metal strip is periodic; it has an ampli-
tude of AT = 1.37 K at a relatively low heating frequency of w = 27 rad/s and 0.71 K at a
frequency of 2007 rad/s. Determine the thermal conductivity of the nanostructured dielec-
tric material. The density and specific heats of the conventional version of the material are
3100 kg/m® and 820 J/kg - K, respectively.
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SOLUTION

Known: Dimensions of a thin metal strip, the frequency and amplitude of the electric
power dissipated within the strip, the amplitude of the induced oscillating strip temperature,
and the thickness of the underlying nanostructured material.

Find: The thermal conductivity of the nanostructured material.

Schematic:
Heated metal strip
Connector < L
pad 4+ éE* éE‘ él‘ x
| v
d Sample
Z
Assumptions:

1. Two-dimensional transient conduction in the x- and z-directions.
2. Constant properties.

3. Negligible radiation and convection losses from the metal strip and top surface of the
sample.

4. The nanostructured material sample is a semi-infinite solid.

5. Uniform heat flux at the interface between the heated strip and the nanostructured
material.

Analysis:  Substitution of AT = 1.37K at w = 27 rad/s and AT = 0.71 K at w = 2007
rad/s into Equation 5.74 results in two equations that may be solved simultaneously to yield

C,=5.35 k=111 W/m-K <

The thermal diffusivity is o = 4.37 X 1077 m%/s, while the thermal penetration depths
are estimated by 8, = V a/w, resulting in §, = 260 um and §, = 26 um at @ = 27 rad/s
and w = 2007 rad/s, respectively.

Comments:

1. The foregoing experimental technique, which is widely used to measure the thermal
conductivity of microscale devices and nanostructured materials, is referred to as the
3 w method [10].

2. Because this technique is based on measurement of a temperature that fluctuates about
a mean value that is approximately the same as the temperature of the surroundings, the
measured value of k is relatively insensitive to radiation heat transfer losses from the
top of the metal strip. Likewise, the technique is insensitive to thermal contact resis-
tances that may exist at the interface between the sensing strip and the underlying
material since these effects cancel when measurements are made at two different
excitation frequencies [10].
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3. The specific heat and density are not strongly dependent on the nanostructure of most
solids, and properties of conventional material may be used.

4. The thermal penetration depth is less than the sample thickness. Therefore, treating the
sample as a semi-infinite solid is a valid approach. Thinner samples could be used if
higher heating frequencies were employed.

3.10 Finite-Difference Methods

Analytical solutions to transient problems are restricted to simple geometries and boundary
conditions, such as the one-dimensional cases considered in the preceding sections. For
some simple two- and three-dimensional geometries, analytical solutions are still possible.
However, in many cases the geometry and/or boundary conditions preclude the use of ana-
lytical techniques, and recourse must be made to nite-difference (or nite-element ) meth-
ods. Such methods, introduced in Section 4.4 for steady-state conditions, are readily
extended to transient problems. In this section we consider explicit and implicit forms of
finite-difference solutions to transient conduction problems.

5.10.1 Discretization of the Heat Equation: The Explicit Method

Once again consider the two-dimensional system of Figure 4.4. Under transient conditions
with constant properties and no internal generation, the appropriate form of the heat equa-
tion, Equation 2.21, is

10T _&*T T
To obtain the finite-difference form of this equation, we may use the central-difference
approximations to the spatial derivatives prescribed by Equations 4.27 and 4.28. Once again
the m and n subscripts may be used to designate the x- and y-locations of discrete nodal
points. However, in addition to being discretized in space, the problem must be discretized in
time. The integer p is introduced for this purpose, where

t = pAt (5.76)
and the finite-difference approximation to the time derivative in Equation 5.75 is expressed as

p+l _ p
oT ~ Tm,n Tm,n

.. v (5.77)

The superscript p is used to denote the time dependence of 7, and the time derivative is
expressed in terms of the difference in temperatures associated with the new (p + 1) and
previous (p) times. Hence calculations must be performed at successive times separated by
the interval Az, and just as a finite-difference solution restricts temperature determination to
discrete points in space, it also restricts it to discrete points in time.

{?/Analytical solutions for some simple two- and three-dimensional geometries are found in Section 5S.2.
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If Equation 5.77 is substituted into Equation 5.75, the nature of the finite-difference
solution will depend on the specific time at which temperatures are evaluated in the
finite-difference approximations to the spatial derivatives. In the explicit method of solution,
these temperatures are evaluated at the previous (p) time. Hence Equation 5.77 is considered
to be a forward-difference approximation to the time derivative. Evaluating terms on the
right-hand side of Equations 4.27 and 4.28 at p and substituting into Equation 5.75,
the explicit form of the finite-difference equation for the interior node (m, n) is

1 Tlgiz-t’ll - Tnl?t n Tnp/H-l n + TI{l)l—] n_ ZTZ n TI{l)l n+1 + Tl]i)’L n—1" 2Tlnlln
a A7 — = : @ ); — + — (A’)2 : (5.78)
X Y

Solving for the nodal temperature at the new (p + 1) time and assuming that Ax = Ay, it
follows that

Thi = Fo(Thy,+ Thoyut Thy +Th, )+ (1 — 4F0)T), (5.79)

where Fo is a finite-difference form of the Fourier number
_ alrt
(Ax)?

This approach can easily be extended to one- or three-dimensional systems. If the system is
one-dimensional in x, the explicit form of the finite-difference equation for an interior node
m reduces to

(5.80)

TP = Fo(TP,, + TP_)) + (1 — 2Fo)T? (5.81)

m—1

Equations 5.79 and 5.81 are explicit because unknown nodal temperatures for the new
time are determined exclusively by known nodal temperatures at the previous time. Hence cal-
culation of the unknown temperatures is straightforward. Since the temperature of each interior
node is known at t = 0 (p = 0) from prescribed initial conditions, the calculations begin at
t = At (p = 1), where Equation 5.79 or 5.81 is applied to each interior node to determine its
temperature. With temperatures known for ¢ = At, the appropriate finite-difference equation is
then applied at each node to determine its temperature at ¢t = 2 Az (p = 2). In this way, the
transient temperature distribution is obtained by marching out in time, using intervals of At.

The accuracy of the finite-difference solution may be improved by decreasing the values
of Ax and Az. Of course, the number of interior nodal points that must be considered increases
with decreasing Ax, and the number of time intervals required to carry the solution to a pre-
scribed final time increases with decreasing At. Hence the computation time increases with
decreasing Ax and At. The choice of Ax is typically based on a compromise between accuracy
and computational requirements. Once this selection has been made, however, the value of At
may not be chosen independently. It is, instead, determined by stability requirements.

An undesirable feature of the explicit method is that it is not unconditionally stable. In
a transient problem, the solution for the nodal temperatures should continuously approach
final (steady-state) values with increasing time. However, with the explicit method, this
solution may be characterized by numerically induced oscillations, which are physically
impossible. The oscillations may become unstable, causing the solution to diverge from the
actual steady-state conditions. To prevent such erroneous results, the prescribed value of At
must be maintained below a certain limit, which depends on Ax and other parameters of the
system. This dependence is termed a stability criterion, which may be obtained mathemati-
cally or demonstrated from a thermodynamic argument (see Problem 5.108). For the
problems of interest in this text, the criterion is determined by requiring that the coefcient
associated with the node of interest at the previous time is greater than or equal to zero.
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In general, this is done by collecting all terms involving T}/, to obtain the form of the coef-
ficient. This result is then used to obtain a limiting relation involving Fo, from which the
maximum allowable value of Af may be determined. For example, with Equations 5.79 and
5.81 already expressed in the desired form, it follows that the stability criterion for a one-

dimensional interior node is (1 — 2Fo0) = 0, or

1
Fo=- 5.82
0= (5.82)
and for a two-dimensional node, it is (1 — 4Fo) = 0, or
Fo=1 (5.83)
4

For prescribed values of Ax and «, these criteria may be used to determine upper limits to
the value of Atr.

Equations 5.79 and 5.81 may also be derived by applying the energy balance method
of Section 4.4.3 to a control volume about the interior node. Accounting for changes in
thermal energy storage, a general form of the energy balance equation may be expressed as

E,+E,=E, (5.84)

In the interest of adopting a consistent methodology, it is again assumed that all heat flow is
into the node.

To illustrate application of Equation 5.84, consider the surface node of the one-
dimensional system shown in Figure 5.12. To more accurately determine thermal condi-
tions near the surface, this node has been assigned a thickness that is one-half that of the
interior nodes. Assuming convection transfer from an adjoining fluid and no generation, it
follows from Equation 5.84 that

kA Ax Ty =T}
hA(T.. = T§) + - (T] = T§) = peA = =4 -0 X 0

or, solving for the surface temperature at r + At,

Tyt = 2hAL oy 2080 e ey gy
0 pch( 0) sz ( 1 0) 0
Ai
T. h
TT T,9 T,® T,® T;®
L —
N~—1

st

I
I .
—! E
chnV :

1

FicUuRE 5.12 Surface node with convection and one-dimensional
transient conduction.
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Recognizing that (2hAt/pcAx) = 2(hAx/k)(aAt/Ax*) = 2 Bi Fo and grouping terms involving
T{, it follows that

T(’)’+1 =2Fo(T? + BiT.) + (1 — 2Fo — 2Bi Fo)T{ (5.85)
The finite-difference form of the Biot number is

_hAx

5
Tk

(5.86)

Recalling the procedure for determining the stability criterion, we require that the coef-
ficient for T/ be greater than or equal to zero. Hence
1 —2Fo—2BiFo=0

or

Fo(l + Bi) = (5.87)

D =

Since the complete finite-difference solution requires the use of Equation 5.81 for the inte-
rior nodes, as well as Equation 5.85 for the surface node, Equation 5.87 must be contrasted
with Equation 5.82 to determine which requirement is more stringent. Since Bi = 0, it is
apparent that the limiting value of Fo for Equation 5.87 is less than that for Equation 5.82.
To ensure stability for all nodes, Equation 5.87 should therefore be used to select the maxi-
mum allowable value of Fo, and hence Az, to be used in the calculations.

Forms of the explicit finite-difference equation for several common geometries are pre-
sented in Table 5.3a. Each equation may be derived by applying the energy balance method
to a control volume about the corresponding node. To develop confidence in your ability to
apply this method, you should attempt to verify at least one of these equations.

ExXAMPLE 5.11

A fuel element of a nuclear reactor is in the shape of a plane wall of thickness 2L = 20 mm
and is convectively cooled at both surfaces, with 7 = 1100 W/m?-K and T,, = 250°C. At
normal operating power, heat is generated uniformly within the element at a volumetric rate
of g, = 10" W/m>. A departure from the steady-state conditions associated with normal
operation will occur if there is a change in the generation rate. Consider a sudden change
to g, =2 X 10" W/m’, and use the explicit finite-difference method to determine the fuel
element temperature distribution after 1.5s. The fuel element thermal properties are
k=30W/m-Kanda =5 X 107° m%s.

SOLUTION
|

Known: Conditions associated with heat generation in a rectangular fuel element with
surface cooling.

Find: Temperature distribution 1.5 s after a change in operating power.



TABLE 5.3 Transient, two-dimensional finite-difference equations (Ax = Ay)

(a) Explicit Method
Conguration Finite-Difference Equation Stability Criterion (b) Implicit Method
T T L Th = Fo(Thsy, + Thoy, (1 +4Fo)T0! ! — Fo(T, + oY,
e + T+ o) Fo=j (5.83) + T T =17 (5.95)
m-1,n : lI m+1,n + (] _4F0)7;rrll,n (579)
}*Mﬂm,n-l 1. Interior node
[Ax—>|
m, n+1
0 =3Fo(Th, \, + 2T0 |, (1 + 4Fo(1 + 3Bi) T} — 3Fo -
R S + 2T e + 1) + 2BiTy) Fo(3+Bi)=3 (5.89) (To, + 2105, + 2100 + Tt
9 m+1,n ’ ’ ’ ’
A} L + (1 —4Fo —$BiFo)T?,, (5.88) =T, +%BiFoT, (5.98)
B -1 2. Node at interior corner with convection
T Tos! = FoQTl, + The (1 + 2Fo(2 + Bi)TY,
i R + 10, +2BiT.) Fo2+Bi =3 (591) — FoQTt, + T0HL + ot
i W + (1 — 4Fo—2Bi Fo)T.,, (5.90) =T0, + 2BiFoT, (5.99)
mn—1
leax—>] 3. Node at plane surface with convection”
wiy =B 040 = 2Fo(TY,_,, + T}, + 2Bi T..) (1 + 4Fo(1 + Bi)T.!
I :f: + (1 — 4Fo — 4Bi Fo)T},, (5.92) Fo(l +B) =% (5.93) — 2Fo(T0 L, + Toi )
2 mn-1 =T.,+4BiFoT. (5.100)
fe-ax—f 4. Node at exterior corner with convection

“To obtain the finite-difference equation and/or stability criterion for an adiabatic surface (or surface of symmetry), simply set Bi equal to zero.

vee
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Schematic:

Fuel element ;,_."|

g =1x10" Wim® B

gp =2 x 10’ Wim® | T., = 250°C
a=5x10°m?s iy h = 1100 W/m?K

k = 30 WmeK T T I

Symmetry adiabat

I I

I I

I I

40 1 g 1
I e I

1Eg |1

I o |l

Geond l Geonv

I I

I I

I 1
Ax_L

2 710

Assumptions:
1. One-dimensional conduction in x.
2. Uniform generation.
3. Constant properties.

Analysis: A numerical solution will be obtained using a space increment of Ax = 2 mm.
Since there is symmetry about the midplane, the nodal network yields six unknown nodal
temperatures. Using the energy balance method, Equation 5.84, an explicit finite-difference
equation may be derived for any interior node m.

TP,I_TP T[)+1_TP TP+I_TP
kA" kA 4 A Ax = pA Axc "
Ax Ax 9 p ¢ At
Solving for 7% ! and rearranging,
A.X 2
o = FO[T,';1 e, + 4 > ) ] + (1 = 2Fo)T?, (1)
This equation may be used for node 0, with 7%,_, = T% ., as well as for nodes 1, 2, 3, and 4.

Applying energy conservation to a control volume about node 5,

MCTSD+] _ Tg

T, — T?
hA(Tw—Tg’)JrkAquqAM:pA 5 v

Ax 2
or

q(Ax)?
2k

Tt = ZFO[T!{’ +BiT, + :| + (1 —2Fo — 2Bi Fo)T% 2)

Since the most restrictive stability criterion is associated with Equation 2, we select
Fo from the requirement that

1

Fo(l + Bi) =
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Hence, with

_ hAx _ 1100 W/m?-K (0.002 m)

Bi X 30W/m-K =0.0733
it follows that
Fo = 0.466
or
F 2 466(2 X 107° m)?
At = o(Ax) = 0.466( 0" m) =0.373s

@ 5%x10°m%s
To be well within the stability limit, we select Az = 0.3 s, which corresponds to

5% 107°m%s(0.3s)

= 0375
(2% 1073 m)

Substituting numerical values, including ¢ = ¢, = 2 X 10’ W/m®, the nodal equations
become

TP+ = 0.375QT7 + 2.67) + 0.2507%

TP =0.375(T§ + T + 2.67) + 0.250T}
T =0.375(TF + T + 2.67) + 0.250T%
T =0.375(T5 + T} + 2.67) + 0.250T%
TV =0.375(T% + TL + 2.67) + 0.250T%

T2 = 0.750(T% + 19.67) + 0.195T%

To begin the marching solution, the initial temperature distribution must be known. This
distribution is given by Equation 3.47, with ¢ = g,. Obtaining 7, = T5 from Equation 3.51,

L 7 3
Ty =T, + L = 2500 + 1O WM X001lm _ 344 gyo¢
h 1100 W/m?- K

it follows that
2
T(x) = 16.67(1 — ;) + 340.91°C

Computed temperatures for the nodal points of interest are shown in the first row of the
accompanying table.

Using the finite-difference equations, the nodal temperatures may be sequentially cal-
culated with a time increment of 0.3 s until the desired final time is reached. The results are
illustrated in rows 2 through 6 of the table and may be contrasted with the new steady-state
condition (row 7), which was obtained by using Equations 3.47 and 3.51 with ¢ = ¢,:
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Tabulated Nodal Temperatures

p 1(s) T, T, T, T, T, T;
0 0 357.58 356.91 35491 351.58 346.91 340.91
1 0.3 358.08 357.41 355.41 352.08 347.41 341.41
2 0.6 358.58 357.91 35591 352.58 34791 341.88
3 0.9 359.08 358.41 356.41 353.08 348.41 342.35
4 1.2 359.58 358.91 356.91 353.58 348.89 342.82
5 1.5 360.08 359.41 357.41 354.07 349.37 343.27
o0 00 465.15 463.82 459.82 453.15 443.82 431.82
Comments:

1. Itis evident that, at 1.5 s, the wall is in the early stages of the transient process and that
many additional calculations would have to be made to reach steady-state conditions
with the finite-difference solution. The computation time could be reduced slightly by
using the maximum allowable time increment (At = 0.373 s), but with some loss of
accuracy. In the interest of maximizing accuracy, the time interval should be reduced
until the computed results become independent of further reductions in Az.

Extending the finite-difference solution, the time required to achieve the new
steady-state condition may be determined, with temperature histories computed for the
midplane (0) and surface (5) nodes having the following forms:

480
465.1

440
431.8

400

T (°C)

360

320
0 100 200 300 400

t(s)

With steady-state temperatures of 7, = 465.15°C and T5 = 431.82°C, it is evident that the
new equilibrium condition is reached within 250 s of the step change in operating power.

2. This problem can be solved using Tools, Finite-Difference Equations, One-Dimensional,
Transient in the Advanced section of IHT. The problem may also be solved using Finite-
Element Heat Transfer (FEHT).

F

3.10.2 Discretization of the Heat Equation: The Implicit Method

In the explicit finite-difference scheme, the temperature of any node at ¢t + Af may be cal-
culated from knowledge of temperatures at the same and neighboring nodes for the preced-
ing time t. Hence determination of a nodal temperature at some time is independent of
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temperatures at other nodes for the same time. Although the method offers computational
convenience, it suffers from limitations on the selection of Az. For a given space increment,
the time interval must be compatible with stability requirements. Frequently, this dictates the
use of extremely small values of Az, and a very large number of time intervals may be neces-
sary to obtain a solution.

A reduction in the amount of computation time may often be realized by employing an
implicit, rather than explicit, finite-difference scheme. The implicit form of a finite-difference
equation may be derived by using Equation 5.77 to approximate the time derivative, while
evaluating all other temperatures at the new (p + 1) time, instead of the previous (p) time.
Equation 5.77 is then considered to provide a backward-difference approximation to the
time derivative. In contrast to Equation 5.78, the implicit form of the finite-difference equa-
tion for the interior node of a two-dimensional system is then

l Tp+l _ T’;;n p+1 + Tp+1 _ 2Tr[r;,+nl

m,n _ m+1,n m—1,n
o Al (AX)Z
Tffn‘ﬂ + Tr[r)ernlfl - 2T;l;l+n]
+ — — - (5.94)
(Ay)
Rearranging and assuming Ax = Ay, it follows that
(1 + 4FO)Tﬁjrnl - FO(Tfntll,n + Tr’;LJ:ll,n + Tl‘lr)lfnl-%-l + Ttl::nl—l) = Trpil,n (595)

From Equation 5.95 it is evident that the new temperature of the (m, n) node depends
on the new temperatures of its adjoining nodes, which are, in general, unknown. Hence, to
determine the unknown nodal temperatures at 7 + Az, the corresponding nodal equations
must be solved simultaneously. Such a solution may be effected by using Gauss—Seidel
iteration or matrix inversion, as discussed in Section 4.5 and Appendix D. The marching
solution would then involve simultaneously solving the nodal equations at each time
t = At, 2At, . . ., until the desired final time was reached.

Relative to the explicit method, the implicit formulation has the important advan-
tage of being unconditionally stable. That is, the solution remains stable for all space
and time intervals, in which case there are no restrictions on Ax and At. Since larger
values of Ar may therefore be used with an implicit method, computation times may
often be reduced, with little loss of accuracy. Nevertheless, to maximize accuracy, At
should be sufficiently small to ensure that the results are independent of further reduc-
tions in its value.

The implicit form of a finite-difference equation may also be derived from the energy
balance method. For the surface node of Figure 5.12, it is readily shown that

(1 +2Fo + 2Fo BHTE*' —2Fo TV ' = 2FoBi T, + T} (5.96)
For any interior node of Figure 5.12, it may also be shown that

(1 + 2Fo)TP* — Fo (TP, + TPy =T7 (5.97)
Forms of the implicit finite-difference equation for other common geometries are
presented in Table 5.3b. Each equation may be derived by applying the energy balance
method.
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it | ExXAMPLE 5.12

A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to
radiation at one surface such that the net heat flux is maintained at a constant value of
3 X 10° W/m?. Using the explicit and implicit finite-difference techniques with a space
increment of Ax =75 mm, determine the temperature at the irradiated surface and at an
interior point that is 150 mm from the surface after 2 min have elapsed. Compare the results
with those obtained from an appropriate analytical solution.

SOLUTION
|

Known: Thick slab of copper, initially at a uniform temperature, is subjected to a con-
stant net heat flux at one surface.

Find:

1. Using the explicit finite-difference method, determine temperatures at the surface and
150 mm from the surface after an elapsed time of 2 min.

2. Repeat the calculations using the implicit finite-difference method.

3. Determine the same temperatures analytically.

Schematic:

q!=3x10%Wm?
—>

m—
Bl
o

l—»]Ax L Ax = 75 mml——»]

Assumptions:
1. One-dimensional conduction in x.

2. For the analytical solution, the thick slab may be approximated as a semi-infinite
medium with constant surface heat flux. For the finite-difference solutions, imple-
mentation of the boundary condition 7(x — o) = T; will be discussed below in this
example.

3. Constant properties.
Properties: Table A.1, copper (300 K): k = 401 W/m-K, & = 117 X 10~° m%s.

Analysis:
1. An explicit form of the finite-difference equation for the surface node may be obtained
by applying an energy balance to a control volume about the node.

TP — TP TP — TP
dA + kA 1 Ax 19 0

0
=A7
Ax PP A
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or

T = 2Fo(

+ T{’) + (1 — 2F0)T}

The finite-difference equation for any interior node is given by Equation 5.81. Both the

surface and interior nodes are governed by the stability criterion

Fo =

0 [—

Noting that the finite-difference equations are simplified by choosing the maxi-

mum allowable value of Fo, we select Fo = 5. Hence

At

With

(Ax)? (0.075 m)*
=Fo —
« 117 X 10" °m?%/s
g;Ax 3% 10° W/m?(0.075 m)

k

the finite-difference equations become

T§* = 56.1°C + T}

401 W/m-K

and

p+l —
Tm -

=56.1°C

=245

Ther + 1o

for the surface and interior nodes, respectively. Performing the calculations, the results

are tabulated as follows:

Explicit Finite-Difference Solution for Fo =5

p Ks) T, T, T, T, T,
0 0 20 20 20 20 20

1 24 76.1 20 20 20 20
2 48 76.1 48.1 20 20 20

3 72 104.2 48.1 34.0 20 20
4 96 104.2 69.1 34.0 27.0 20

5 120 125.2 69.1 48.1 27.0 23.5

After 2 min, the surface temperature and the desired interior temperature are 7, =
125.2°C and T, = 48.1°C.

It can be seen from the explicit finite-difference solution that, with each successive
time step, one more nodal temperature changes from its initial condition. For this reason,
it is not necessary to formally implement the second boundary condition 7(x — ) = T.
Also note that calculation of identical temperatures at successive times for the same node
is an idiosyncrasy of using the maximum allowable value of Fo with the explicit finite-
difference technique. The actual physical condition is, of course, one in which the temper-
ature changes continuously with time. The idiosyncrasy is diminished and the accuracy of
the calculations is improved by reducing the value of Fo.
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To determine the extent to which the accuracy may be improved by reducing Fo,
let us redo the calculations for Fo =} (Ar = 12s). The finite-difference equations are
then of the form

T = %(56.1°C +T) + %T{)’
TP+l = l(T"H + TP )+ lTp
m 4 m m 2 m

and the results of the calculations are tabulated as follows:

Explicit Finite-Difference Solution for Fo = :

p 1(s) T, T, T, T, T, T T, T, Ty
0 0 20 20 20 20 20 20 20 20 20
1 12 48.1 20 20 20 20 20 20 20 20
2 24 62.1 270 20 20 20 20 20 20 20
3 36 726 340 218 20 20 20 20 20 20
4 48 814 406 244 204 20 20 20 20 20
5 60 89.0 467 275 213 201 20 20 20 20
6 72 959 525 307 225 204 200 20 20 20
7 84 1023 579 341 241 208 201 200 20 20
8 96 108.1 63.1 376 258 215 203 200 200 20
9 108 1136 679 410 276 222 205 201 200 200

(]

120 118.8 72.6 44.4 29.6 232 20.8 20.2 20.0 20.0 ¢

After 2 min, the desired temperatures are 7, = 118.8°C and T, = 44.4°C. Comparing
the above results with those obtained for Fo = 3, it is clear that by reducing Fo we
have diminished the problem of recurring temperatures. We have also predicted
greater thermal penetration (to node 6 instead of node 3). An assessment of the
improvement in accuracy will be given later, by comparison with an exact solution. In
the absence of an exact solution, the value of Fo could be successively reduced until

the results became essentially independent of Fo.

2. Performing an energy balance on a control volume about the surface node, the implicit
form of the finite-difference equation is

p+1 _ p+l p+1 _ p
T Ty Ax Ty Ty

"tk =
o Ax P A
or
2aqh At
(1 +2Fo)T}" — 2FoT!"" = e TT8

Arbitrarily choosing Fo = 5 (At = 24 ), it follows that

2T — TP =56.1 + T}
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From Equation 5.97, the finite-difference equation for any interior node is then of the
form
— Tor + 4Pt — TRt = 27!

In contrast to the explicit method, the implicit method requires the simultaneous
solution of the nodal equations for all nodes at time p + 1. Hence, the number of
nodes under consideration must be limited to some finite number, and a boundary con-
dition must be applied at the last node. The number of nodes may be limited to those
that are affected significantly by the change in boundary condition for the time of
interest. From the results of the explicit method, it is evident that we are safe in choos-
ing nine nodes corresponding to Ty, T}, ..., Ts. We are thereby assuming that, at
t = 120 s, there has been no change in 7y, and the boundary condition is implemented
numerically as Ty = 20°C.

We now have a set of nine equations that must be solved simultaneously for each
time increment. We can express the equations in the form [A][T] = [C], where

2 -1 o 0 0O 0 0 0 ©
—1 4 -1 0 0 O 0 0 0
0 -1 4 -1 0 0 0 0 0
0 0O -1 4 -1 0 0 0 0
[A] = 0 0 0O -1 4 -1 0 0 0
0 0 0 0 -1 4 -1 0 0
0 0 0O 0 0 -1 4 -1 0
0 0 o 0 0 0 -1 4 -1
0 0 0 0 0 0 0 -1 4
[ 56.1+ T |
2TY
21Y
277
[C]= | 2T}
217
277
277
2T+ T8

Note that numerical values for the components of [C] are determined from previous
values of the nodal temperatures. Note also how the finite-difference equation for node
8 appears in matrices [A] and [C], with T/ "' = 20°C, as indicated previously.

A table of nodal temperatures may be compiled, beginning with the first row
(p = 0) corresponding to the prescribed initial condition. To obtain nodal tempera-
tures for subsequent times, the matrix equation must be solved. At each time step
p + 1, [C] is updated using the previous time step (p) values. The process is carried
out five times to determine the nodal temperatures at 120 s. The desired temperatures
are T, = 114.7°C and T, = 44.2°C.
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Implicit Finite-Difference Solution for Fo = :

1(s) T, T, T, T, T, T, T, T, Ty

0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
24 52.4 28.7 223 20.6 20.2 20.0 20.0 20.0 20.0
48 74.0 39.5 26.6 22.1 20.7 20.2 20.1 20.0 20.0
72 90.2 50.3 32.0 244 21.6 20.6 20.2 20.1 20.0
96 103.4 60.5 38.0 274 22.9 21.1 204 20.2 20.1
120 114.7 70.0 442 30.9 24.7 21.9 20.8 20.3 20.1 4

[V I VI S B

3. Approximating the slab as a semi-infinite medium, the appropriate analytical expres-
sion is given by Equation 5.62, which may be applied to any point in the slab.

2‘1;:(“1/’77)1/2 X2 qox X
Tx,t)— T, = p exp Aot P erfc 5 ;

At the surface, this expression yields

2 X 3 X 10° W/m?
401 W/m-K

7(0, 120 s) — 20°C = (117 X 10~ m?/s X 120 s/m)""?

or
7(0, 120 s) = 120.0°C <
At the interior point (x = 0.15 m)

2 X 3 X 10° W/m?

7(0.15m, 120s) = 20°C = == "5 =

X (117 X 10~°m?/s X 120 s/m)"?

2
" exp[_ (0.15 m) ]

4% 117 X107 °m?%s X 1205

_ 3X10°W/m* X 0.15m
401 W/m-K

" [1 B erf< 0.15m ﬂ
2V117 X 10 *m¥s X 120’5

7(0.15 m, 120 s) = 45.4°C <

Comments:

1. Comparing the exact results with those obtained from the three approximate solutions,
it is clear that the explicit method with Fo = ; provides the most accurate predictions.

Method T, = T(0, 120 5) T, = T(0.15 m, 120 5)
Explicit (Fo = 3) 125.2 48.1
Explicit (Fo = %) 118.8 44.4
Implicit (Fo = 3) 114.7 44.2

Exact 120.0 454
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This is not unexpected, since the corresponding value of Af is 50% smaller than that
used in the other two methods. Although computations are simplified by using the
maximum allowable value of Fo in the explicit method, the accuracy of the results is
seldom satisfactory.

. The accuracy of the foregoing calculations is adversely affected by the coarse grid

(Ax = 75 mm), as well as by the large time steps (Ar = 24 s, 12 s). Applying the implicit
method with Ax = 18.75Smm and Ar = 6s (Fo = 2.0), the solution yields T, = T(0,
120s) = 119.2°C and 7, = 7(0.15 m, 120 s) = 45.3°C, both of which are in good agree-
ment with the exact solution. Complete temperature distributions may be plotted at any
of the discrete times, and results obtained at t = 60 and 120 s are as follows:

120
Implicit finite-difference
100 solution (Ax = 18.75 mm, At =6 s)
80
S T(x, 120 s)
< 60
~
T(x, 60 s)
40
20[-————c-o—T===
Tk 0)
0
0 100 200 300 400 500 600
x (mm)

Note that, at + = 120 s, the assumption of a semi-infinite medium would remain valid
if the thickness of the slab exceeded approximately 500 mm.

. Note that the coefficient matrix [A] is tridiagonal. That is, all elements are zero except

those that are on, or to either side of, the main diagonal. Tridiagonal matrices are asso-
ciated with one-dimensional conduction problems.

. A more general radiative heating condition would be one in which the surface is suddenly

exposed to large surroundings at an elevated temperature T, (Problem 5.126). The net
rate at which radiation is transferred to the surface may then be calculated from Equation
1.7. Allowing for convection heat transfer to the surface, application of conservation of
energy to the surface node yields an explicit finite-difference equation of the form
TP — TP Ax Y
Td — (TN + T, — T + k"L =p=Lc -2 "2
80-[ sur ( 0) ] ( 0) AX P 2 ¢ At
Use of this finite-difference equation in a numerical solution is complicated by the fact
that it is nonlinear. However, the equation may be linearized by introducing the radiation
heat transfer coefficient 4, defined by Equation 1.9, and the finite-difference equation is
TP —TF _ Ax T§'—T§
W (T — TH + T, — T + k =p==

r( sur O) ( 0) A.)C P D C A[
The solution may proceed in the usual manner, although the effect of a radiative
Biot number (Bi, = h, Ax/k) must be included in the stability criterion, and the
value of 4, must be updated at each step in the calculations. If the implicit method
is used, A, is calculated at p + 1, in which case an iterative calculation must be
made at each time step.
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5. This problem can be solved using Tools, Finite-Difference Equations, One-Dimensional,
Transient in the Advanced section of IHT. This example is also included in FEHT as a
solved model accessed through the Toolbar menu, Examples. The input screen summarizes
key pre- and postprocessing steps, as well as results for nodal spacings of 1 and 0.125 mm.
As an exercise, press Run to solve for the nodal temperatures, and in the View menu, select
Temperature Contours to represent the temperature field in the form of isotherms.

.11  Summary

Transient conduction occurs in numerous engineering applications and may be treated
using different methods. There is certainly much to be said for simplicity, in which case,
when confronted with a transient problem, the first thing you should do is calculate the Biot
number. If this number is much less than unity, you may use the lumped capacitance
method to obtain accurate results with minimal computational requirements. However, if
the Biot number is not much less than unity, spatial effects must be considered, and some
other method must be used. Analytical results are available in convenient graphical and
equation form for the plane wall, the infinite cylinder, the sphere, and the semi-infinite
solid. You should know when and how to use these results. If geometrical complexities
and/or the form of the boundary conditions preclude their use, recourse must be made to an
approximate numerical technique, such as the finite-difference method.

You may test your understanding of key concepts by addressing the following questions:

e Under what conditions may the lumped capacitance method be used to predict the tran-
sient response of a solid to a change in its thermal environment?

* What is the physical interpretation of the Biot number?

* Is the lumped capacitance method of analysis likely to be more applicable for a hot
solid being cooled by forced convection in air or in water? By forced convection in air
or natural convection in air?

¢ Is the lumped capacitance method of analysis likely to be more applicable for cooling of
a hot solid made of copper or aluminum? For silicon nitride or glass?

» What parameters determine the time constant associated with the transient thermal response
of a lumped capacitance solid? Is this response accelerated or decelerated by an increase in
the convection coefficient? By an increase in the density or specific heat of the solid?

 For one-dimensional, transient conduction in a plane wall, a long cylinder, or a sphere
with surface convection, what dimensionless parameters may be used to simplify the
representation of thermal conditions? How are these parameters defined?

* Why is the semi-infinite solution applicable to any geometry at early times?

e What is the physical interpretation of the Fourier number?

* What requirement must be satisfied for use of a one-term approximation to determine
the transient thermal response of a plane wall, a long cylinder, or a sphere experiencing
one-dimensional conduction due to a change in surface conditions? At what stage of a
transient process is the requirement not satisfied?

* What does transient heating or cooling of a plane wall with equivalent convection con-
ditions at opposite surfaces have in common with a plane wall heated or cooled by
convection at one surface and well insulated at the other surface?
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* How may a one-term approximation be used to determine the transient thermal response of
a plane wall, long cylinder, or sphere subjected to a sudden change in surface temperature?

» For one-dimensional, transient conduction, what is implied by the idealization of a semi-
innite solid? Under what conditions may the idealization be applied to a plane wall?

* What differentiates an explicit, finite-difference solution to a transient conduction prob-

lem from an implicit solution?

» What is meant by characterization of the implicit finite-difference method as uncondition-
ally stable? What constraint is placed on the explicit method to ensure a stable solution?
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Qualitative Considerations

5.1 Consider a thin electrical heater attached to a plate and
ba